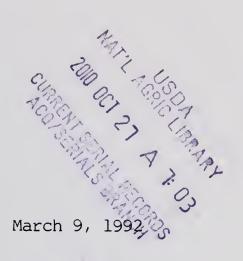

Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

QTX 571 P4P47



Agricultural Marketing Service

Pesticide Data Program

United States Department of Agriculture Agricultural Marketing Service P.O. Box 96456 Washington, DC 20090-6456

To the Reader:

The Agricultural Marketing Service of the United States Department of Agriculture in May 1991, implemented the Pesticide Data Program to collect objective, comprehensive data on pesticide residues for fresh fruit and vegetables. This program was submitted to Congress as part of the President's 1991 budget to address the increased interest in food safety by producers and consumers.

This program was designed to provide government agencies with an improved data base to respond more effectively to food safety issues. The primary recipient of the program's data will be the Environmental Protection Agency, which will use this information to support its risk assessment process.

The enclosed report provides residue data for the last 8 months of calendar year 1991. This program has been funded by Congress and is operated through cooperative agreements with six participating States. These States, California, Florida, Michigan, New York, Texas, and Washington, have the responsibility for sample collection and residue analyses.

The program was expanded in 1992 to include additional commodities and pesticide classes. This information will be reflected in future reports.

We welcome comments regarding this report. Comments should be addressed to:

Dr. Craig A. Reed, Director Science Division Agricultural Marketing Service U.S. Department of Agriculture P.O. Box 96456 (Rm 3064S) Washington, DC 20090-6456

PESTICIDE DATA PROGRAM Calendar Year 1991 Report

Agricultural Marketing Service

U.S. Department of Agriculture

AGENCY FOOD SAFETY ACTIVITIES

The Agricultural Marketing Service (AMS) administers more than 50 statutes which are designed to facilitate and promote fair trading practices for agricultural commodities based on measures of quality, safety and wholesomeness. AMS enforces the Egg Products Inspection Act which provides for continuous inspection at egg breaking and processing plants producing liquid, frozen, or dried egg products. AMS also provides analytical testing for microbiological and chemical constituents in processed dairy products, eggs, meat and poultry, and fruit and vegetables in support of voluntary grading, certification, laboratory accreditation and acceptance programs. AMS works cooperatively with other Federal public health agencies in conducting mycotoxin contamination studies in peanut products and testing for chemical residues in domestic and imported produce. Furthermore, AMS has a strong working relationship with the States, particularly regarding fruit and vegetables. The Science Division conducts laboratory programs in support of AMS food safety and quality activities.

TABLE OF CONTENTS

EXECUTIV	E SUMMARY		iv
SECTION 1	:		1
1.0	PROGRAM INTR Table 1.1	ODUCTION EPA Pesticide/Commodity Pairs	2 4
SECTION 2	2:		5
2.0	SAMPLING 2.1 2.2 Table 2.1 Figure 1 Table 2.2	Introduction Sampling Procedures Sample Collection Sites Maps of Geographic Distribution of Sites by State Sample Profile by Origin	6 6 9 10 12
SECTION 3	3:		16
3.0	LABORATORY C 3.1 3.2 3.3 3.4 Table 3.1	OVERVIEW Sample Preparation Sample Analysis Quality Control Requirements Quality Assurance Limits of Detection of Residues by State	17 17 18 18 19
SECTION 4	l:		21
4.0	SAMPLE RESULT Table 4.1 Table 4.2	TS Distribution of Residues Detected by Commodity Residue Concentration Levels and State Distribution	22 24 27
APPENDIC	ES:		30
	Appendix A Appendix B Appendix C	State Monthly Commodity Sampling Plans Distribution of Residues Detected by Pesticide Use and Toxicology of Pesticides Detected	31 39 47

EXECUTIVE SUMMARY

The Agricultural Marketing Service (AMS) of the United States Department of Agriculture (USDA) began the residue testing program in May 1991 as part of USDA's Pesticide Data Program (PDP). This program collects actual concentration levels of pesticide residues in fresh fruit and vegetables close to the consumer level while retaining product origin. The PDP program is a result of President Bush's 1989 Food Safety Proposal, and has been funded by Congress for 2 years. AMS developed PDP's policy and operations procedures and residue testing priorities in close cooperation with the Environmental Protection Agency (EPA) and the Food and Drug Administration (FDA). These data are to be used by EPA for pesticide risk assessment and serve as an initial data base for national residue testing so that government agencies can respond more effectively to food safety issues.

The residue monitoring program is being implemented in stages based on the data needs expressed by EPA. The data presented in this report reflect the first stages of that plan. The sample collections and analyses were conducted by six participating States: California, Florida, Michigan, New York, Texas, and Washington. These States represent diverse geographic regions, approximately 40 percent of the Nation's population, and a large segment of the fresh fruits and vegetables grown in the U.S.

Testing began in mid-May 1991 with three commodities -- grapes, lettuce, and potatoes. By September 1991, apples, bananas, grapefruit, and oranges were added. Analysis began with 8 chlorinated pesticides of interest to EPA and expanded to include organophosphate pesticide analysis for a total of 11 pesticides of interest to EPA by November 1991. This includes 24 of the 88 pesticide/commodity pairs of EPA interest -- excluding methyl bromide. By the end of the calendar year, 34 different pesticide residues were detected.

A total of 1,963 samples, apportioned by State population, were collected in the 6 States. These samples were collected at random from terminal produce markets and chain store distribution centers. States provided quarterly sampling plans based on AMS's quarterly program plan for commodities and pesticides to be tested. Every State identified a random date each month for collecting all samples for a commodity from different sites. This procedure enabled the laboratories to provide the necessary quality control criteria to ensure the integrity and reliability of the data. Sample origin was from the 6 participating States, 27 additional States, and 13 countries.

At the laboratory, samples were examined for acceptability for analysis. Only the edible portions of the products were prepared, employing procedures similar to those consumers would use, and analyzed. Each laboratory used its current analytical procedures, but was required to meet PDP quality control (QC) standards necessary to demonstrate equivalency of data for the 11 pesticides of interest to EPA, and for reporting other detected pesticides.

The QC requirements included a list of pesticide detection levels, laboratory capability studies, and rigorous QC controls with each set of samples tested. In addition, all laboratories participated in a proficiency testing program to demonstrate performance and determine laboratory capability on unknown samples.

A total of 1,901 samples were analyzed. There were 422 samples (22 percent) with detectable levels of pesticide residues, i.e., "positive samples." The percentage of positive samples varied by commodity as follows: apples (38 percent), grapes (34 percent), potatoes (27 percent), oranges (19 percent), lettuce (17 percent), grapefruit (16 percent), and none in bananas. There were four violations from four different States for pesticide residues having no commodity tolerances. Ten of the 11 pesticides of interest to EPA were detected (the exception being hexachlorobenzene) and covered 9 pesticide/commodity pairs. Two pesticide/commodity pairs, dicloran and iprodione in grapes, were detected in samples collected in all six States.

There were 511 pesticide residues detected in the 1,901 samples analyzed. These pesticide residues represented 34 different chlorinated and/or organophosphate pesticides of which 199 (39 percent) were of interest to EPA. The number of pesticide/commodity pairs showing the greatest percentage of findings were: iprodione/grapes (15.2 percent), dicloran/grapes (14.6 percent), chlorpyrifos/apples (15.7 percent), permethrins/lettuce (9.4 percent). Most of the residues were detected at levels substantially below tolerance levels. A tolerance is the amount of pesticide residue permitted on agricultural products in the USA under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA).

Other pesticide/commodity pairs showing large detection percentages were: chlorpropham/ potatoes (17.9 percent), azinphos methyl/apples (15.6 percent), captan/apples (8.6 percent), and thiabendazole in citrus (60 percent)--applicable only to Michigan samples. Imazalil, a post harvest fungicide, was detected in 10.2 percent of the citrus products tested.

The significance of the residue findings will be determined by EPA's risk assessment process. See Appendix C for uses and toxicology for each pesticide.

SECTION 1.

PROGRAM INTRODUCTION

,

1.0 PROGRAM INTRODUCTION

USDA's Pesticide Data Program (PDP) is a result of President Bush's 1989 Food Safety Proposal which called for streamlining government's ability to assess potentially hazardous pesticides in food. Government agencies charged with pesticide oversight responsibilities consider reliable pesticide residue data to be of paramount importance in achieving the President's objective. The mission of the PDP is to collect objective, comprehensive data on actual pesticide residues in food at the consumer level. In 1991, the Agricultural Marketing Service began residue monitoring efforts to determine actual concentration levels in fresh fruit and vegetables.

PDP's operations for the past year were multi-departmental. USDA developed the program's policy and operational procedures and initial residue priorities in close cooperation with the Environmental Protection Agency (EPA) and the Food and Drug Administration (FDA). In addition, the data presentation is compatible with FDA's nomenclature system which enhances the close cooperation on uniform data reporting between government agencies, and also supplements FDA's enforcement responsibility.

The primary recipient of the residue data is EPA, which will use the data to support its pesticide risk assessment process for reregistration or special review. Congressional support to fund this program reflects the increased interest in pesticide issues by producers and consumers. The data presented in this report serve as the initial data base for government agencies to use in responding more effectively to food safety issues involving pesticide residues.

The residue monitoring program is being implemented in stages based on the overall data needs expressed by EPA, so that the integrity of the data is not compromised. The data presented in this report reflect the initial stages of that plan. The testing program operations are designed so that pesticide issue priorities and changes in program emphasis requested by EPA can be readily implemented. However, to provide comprehensive reliable data for risk assessment evaluations, the program is designed to collect actual residue data on at least a 2-year cycle. This cycle will accommodate availability of fresh produce from a variety of growing areas.

Although PDP is USDA sponsored, the sample collections and residue analysis for selected pesticides were done by the six participating States: California, Florida, Michigan, New York, Texas, and Washington. Furthermore, these States had the staff, expertise, and facilities to provide these testing services in a matter of months. Collectively, these States represent approximately 40 percent of the U.S. population and diverse geographic regions of the U.S. These States account for a large segment of the fresh produce grown in the U.S.

The samples were collected at terminal produce markets and chain store distribution centers. These sampling points are the closest level to the consumer that still enables the origin of the samples to be identified. This approach is a major departure from using the farm gate or packing house, normally the preferred site for programs charged with enforcement of tolerances. The objective of collecting these data is to provide an assessment of pesticide

residue in fresh fruit and vegetables: accounting for product time in transit, taking into account population demographics, and determining actual consumer exposure level by EPA for each pesticide studied on edible portions of the product.

From the onset, PDP was designed to generate high quality data. Pesticide residues reported were replicated and verified using alternate detection systems. Focused analysis on specific pesticides of interest to EPA enabled PDP to achieve detection of residues at lower concentration levels than generally reported from other testing programs.

Table 1.1 lists the 7 commodities and 11 pesticides of interest to EPA which were included in the residue testing program in 1991. This approach encompasses 24 of the 88 pesticide/ commodity pairs which were designated by EPA, with the exception of methyl bromide which required an analytical procedure unavailable in all participating States. The testing plans were developed and introduced to maximize the pesticides of interest to EPA, using the resources available.

Program operations began in mid-May 1991, with three States--Florida, New York, and Washington. In June 1991, Michigan and Texas started sample testing, and in July 1991 California began its testing program. The three initial commodities chosen--grapes, lettuce, and potatoes--coupled with the 8 chlorinated pesticides on the EPA list covered 11 of the pesticide/commodity pairs. These initial eight pesticides were: chlorpyrifos, dicloran, hexachlorobenzene, iprodione, lindane, methoxychlor, the permethrins, and quintozene (PCNB). The general criteria for EPA initially selecting these pesticides were based on: (1) toxicity of the pesticide, (2) likelihood of the need for market place residue data for more accurate exposure assessment, and (3) the need for residue data to support minor use registrations. The 11 pesticides on the EPA list were targeted for analysis in all commodity samples. For the other pesticides added to the testing system, emphasis was placed on analyzing for pesticide residues in specific commodities where frequent detections were noted.

In August 1991, grapefruit and oranges were included; and, in September 1991, apples and bananas were added, making a total of seven commodities. Testing capability was expanded in October 1991 to include dicofol, and again in November to include acephate and methamidophos, as part of the organophosphate class of pesticides. Additional capability was added incrementally whenever new pesticides were detected and their sensitivity and quality control requirements were determined. At the end of 1991, 34 different pesticides were detected in the testing system, including some post harvest fungicides, such as imazalil.

This report is presented in several sections. The Sampling section describes the sampling background and procedure, profiles sampling sites by city, and gives the origin of the samples tested. The Laboratory Overview section provides a description of the sample preparation methods, testing procedures, and quality control requirements to produce data of high quality. The Sample Results section profiles pesticide residues found by commodity, and residues detected by pesticide and State, highlighting the pesticide/commodity pairs of interest to EPA. There are three appendices: (A) State monthly sampling plans, (B) Distribution of residues by pesticide, and (C) Profile of the uses and toxicology of the pesticide residues detected.

EPA PESTICIDE/COMMODITY PAIRS MONITORED FOR RESIDUES **TABLE 1.1**

			COM	COMMODITY*			
PESTICIDE	Apples	Bananas	Grapefruit	Grapes	Lettuce	Oranges	Potatoes
Acephate					1		
Chlorpyrifos	1	•	,	`		1	
Dicloran (Botran [®])				•	1		•
Dicofol (o, ρ') and ρ, ρ'	1		,			,	
НСВ		1					
Iprodione				,	,		
Lindane					1		
Methamidophos					,		1
Methoxychlor	1			~			
Quintozene (PCNB)		`					
Permethrin (cis and trans)					1		•

* Potatoes, grapes, and lettuce monitoring began in May 1991. Grapefruit and oranges were added in August 1991, and apples and bananas were added in September 1991.

SECTION 2.

SAMPLING

.

•

2.0 SAMPLING

2.1 <u>Introduction</u>

The distribution system for fresh fruits and vegetables is very complex and additional time is required to develop a statistically-defensible protocol for sampling these products, e.g., Florida has primarily a chain store distribution system, whereas California relies heavily on terminal produce markets. To meet the immediate needs of the Pesticide Data Program (PDP), a set of initial sampling procedures was developed. These procedures were based on produce distribution information that was available at the beginning of PDP implementation, and will be revised as additional information is obtained.

These initial sampling procedures allocate samples across major sources of variability in the distribution chain for fresh produce, e.g., major distribution centers, origin of product (domestic or imported), geographical areas in the U.S., and seasons of the year.

The purpose of these initial sampling procedures is to obtain objective, comprehensive data on the concentrations of pesticide residues in designated domestic and imported fresh fruits and vegetables that were available for sampling during calendar year 1991 in major distribution channels in the States of California, Florida, Michigan, New York, Texas, and Washington. The reason for using random selection processes in these initial procedures is to obtain samples in an objective manner that is as free as possible of judgmental decisions by the persons responsible for collecting the samples. Valid statistical inferences from the data obtained using these initial sampling procedures will not be possible at the National or State level.

The PDP results from 1991 provide an objective representation of the pesticide residue concentrations in chain store distribution centers and terminal markets in the six participating States. The results obtained from PDP are uniquely based on the collection of random samples, and as such, should not be combined or summarized with any existing Federal or State data. The primary sources of existing government data in most instances are samples obtained in a manner to increase the chance of finding violative samples.

The PDP initial, as well as final, sampling programs will be treated as processes that need ongoing review in order to identify problems and take appropriate corrective actions. These programs will be continuously improved based on these reviews and feedback from personnel involved with the program.

2.2 Sampling Procedures

Sampling was based on at least a minimum of 500 randomly selected samples per commodity per year. To replace samples received in poor condition where analysis was not advisable or where commodities were not available, a 20 percent sample overage was required. A total of 52 samples were collected each month, for an annual total of 624 samples. Samples

-

collected included imported products, commodities grown within the State, and commodities grown in other States but in distribution channels in the participating State. Sample selection was based on the general commodity, regardless of variety and origin. However, the variety (e.g., leaf lettuce, Golden Delicious apples, etc.) was stated on the sample form to provide additional information if needed for data assessment. A 2- to 5-pound composite sample, representing several parts of the grower's lot being sampled, was collected. Samples were distributed proportionally among the six participating States as shown below based on each State's population:

California	168	 14 samples/commodity/month
Florida	96	 8 samples/commodity/month
Michigan	84	 7 samples/commodity/month
New York	108	 9 samples/commodity/month
Texas	108	 9 samples/commodity/month
Washington	_60	 <u>5</u> samples/commodity/month
TOTAL	624	52 samples

The Science Division (SD) of AMS provided a quarterly plan for commodities to be tested. The quarterly plan specified the sampling requirements by commodities for each month in the quarter. Each State was required to submit a sampling plan listing locations of possible sampling sites. These sampling sites were further identified by a three-digit code or reference number which was incorporated in the sample nomenclature. In addition, the States provided a sampling date (or two consecutive dates) selected randomly, assuring that samples would be collected, if possible, at least once from each site within a given sampling year and that each commodity would have a different collection date; although using random selection, the same collection date could be used for more than one commodity. This procedure enabled the program to maintain objectivity in the sample selection process and allowed State laboratories to receive the same commodity in sets, thereby, meeting laboratory quality control requirements established by the program. Appendix A shows in calendar format the proposed monthly sampling plans of all participating States from May through December 1991.

The number of chain store distribution centers and terminal markets identified as sample collection sites varied by State. It was the States' responsibility to identify these sites, to assign them reference numbers, and to assure that sample(s) were collected from at least each site on a random basis within a given sampling year before resampling the same site. Table 2.1 is a list of sample collection sites (cities/areas) by State. Figure 1 shows maps depicting the geographic distribution of the sites by State. The number of sites varies from 9 in Washington to 224 in California. In California, as well as in New York, the number of sites exceeded the number of samples to be collected annually.

Sample collectors were instructed to write a USDA sample number on all copies of the Sample Collection Forms. This number was designed to incorporate the following: (1) the State in which the sample was collected, (2) the sampling date, (3) the sample site code, and (4) the product code. The nomenclature requirements and instructions, provided to each State for dissemination to the sample collectors, generated unique sample numbers

constructed by the collector on-site. States were requested to use alternate sampling sites in the event that a commodity was not available at the original sampling site. These alternate sites were also chosen at random, but could be located in the vicinity of the original sites for logistical purposes and to meet time requirements to complete sample sets. A total of 1,963, 98.8 percent of the proposed 1,986 samples, were collected. Tabulation of the 1,963 samples collected (May through December 1991) by State is as follows: California (503), Florida (304), Michigan (252), New York (363), Texas (339), and Washington (202).

Table 2.2 shows the origin of all samples taken for calendar year 1991 (May through December). As shown in this table, the sample origins cover not only the 6 participating states, but also 27 other States as well as 13 foreign countries. The table also shows that: (1) all bananas were imports, (2) the majority of lettuce and grapes originated in California, (3) the majority of citrus products (oranges and grapefruit) originated in California and Florida, (4) a substantial number of apples originated in Washington, and (5) potatoes originated from a large number of States.

The distribution of samples by origin is greatly affected by bananas. Excluding bananas, the distribution of commodities per origin is as follows: 85 percent originated in the 6 participating States, 12 percent originated in non-participating States, 2 percent were imported, and for the remaining 1 percent the origin was not available. If bananas are included, the distribution of the commodities per origins is 76 percent for the 6 participating States, 11 percent for the additional States, 12 percent imported, and, for the remaining 1 percent, the origin was not available.

TABLE 2.1SAMPLING SITES BY STATE

CALIFORNIA

MICHIGAN

City	Percent of Sites	Percent of Samples	City	Percent of	Percent of
	Side	Sum pies		Sites	Sam pies
Avenal	1	0.4	Ann Arbor Area	5	12.2
Bakersfield	3	1.3	Battle Creek	1	2.4
Byron	1	0.4	Bay City	1	2.4
Chico	1	0.4	Cadillac	1	2.4
Colton	1	0.4	Decatur	1	2.4
East Bay (Oakland)	30	13.4	Detroit Area	12	29.3
Fairfield	1	0.4	Flint	2	4.9
Fresno	5	2.2	Grand Rapids	6	14.6
Lake Tahoe	1	0.4	Kalamazoo	1	2.4
Los Angeles Basin	82	36.6	Lansing Area	7	17.1
Madera	1	0.4	Niles	1	2.4
Merced	1	0.4	Saginaw	1	2.4
Monterey Bay Area	3	1.3	Standish	1	2.4
Mount Shasta	1 .	0.4	Traverse City	1	2.4
Oxnard Area	2	0.9	TOTAL	41	
Redding	1	0.4		—	
Sacramento Area	23	10.3		NEW YORK	
San Diego Area	3	1.3			
San Luis Obispo Area	2	0.9	City	Number of	Percent of
San Jose	3	1.3		Sites	Samples
San Rafael	2	0.9			
Stockton Area	7	3.1	Albany	11	7.6
Ukiah	1	0.4	Albion	1	0.7
Visalia	1	0.4	Buffalo	14	9.7
West Bay (San Francisco)	45	20.1	Canastota	3	2.1
Yuba City Area	_2	0. 9	Castile	1	0.7
TOTAL	224		Chittenango	2	1.4
			Horscheads	1	0.7
			Ithaca	1	0.7
			Jamestown	3	2.1
			Lockport/Batavia Area	4	2.8
			Long Island	7	4.8
FLORIDA			Marion	2	1.4
	<u></u>		New York City	58	40.0
City	Number of	Percent of	Norwich	1	0.7
	Sites	Samples	Ontario	1	0.7
			Oswego	3	2.1
Green Cove Springs	1	4.8	Plattaburg Area	2	1.4
Jacksonville	ŝ	23.8	Rochester	6	4.1
Lakeland	1	4.8	Schobarie	1	0.7
Miami		4.0	Cauthana Man Mark	14	0.7

WASHINGTON

Miami

Orlando

Tampa

TOTAL

Plant City

Pompano Beach

<u>5</u> 21

City	Number of Sites	Percent of Samples	Cisty	Number of Sites	Percent of Samples
Seattle/Tocoma	5	55.6	Amarillo	1	3.7
Spokane	3	33.3	Brenham	1	3.7
Yakima	_1	11.1	Dallas/Fort Worth	10	37.0
TOTAL	9		El Paso	1	3.7
	_		Houston	8	29.6
			Lubbock	1	3.7
			Lufkin	1	3.7

4.8

9.5

9.5

19.0

23.8

Southeast New York

Syracuse

Willsboro

San Antonio

Tyler

TOTAL

TOTAL

Utica

14

6

2

 $\frac{1}{145}$

TEXAS

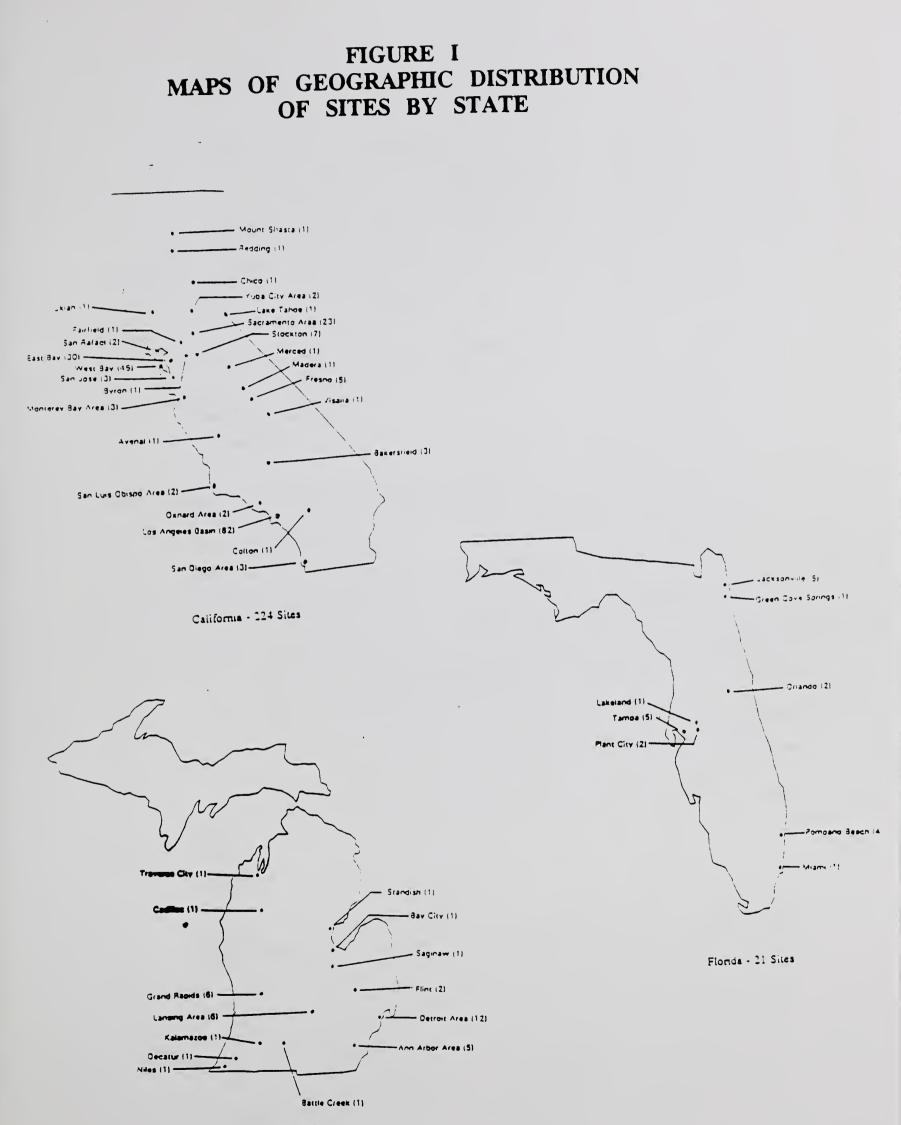
3

 $\frac{1}{27}$

-

9.7

4.1


1.4

0.7

11.1

3.7

Michigan - 41 Sites

10

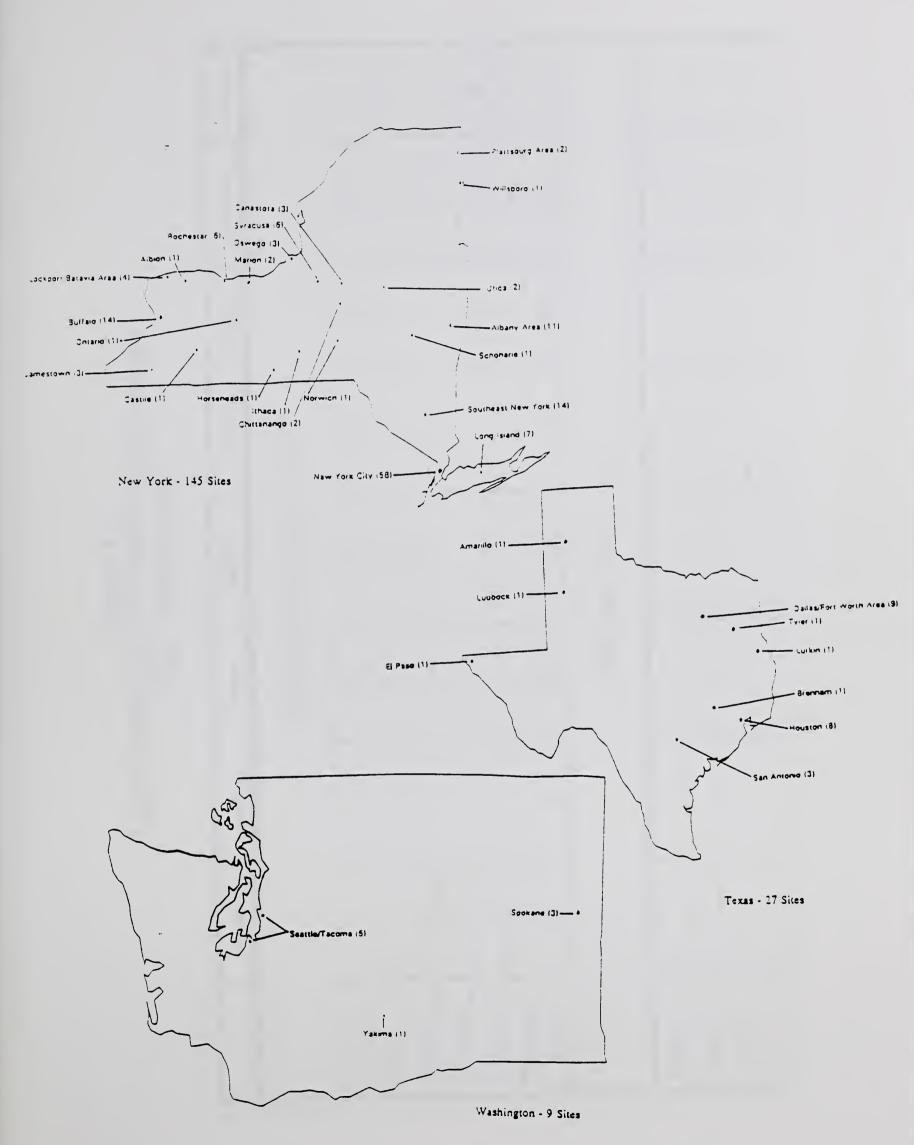
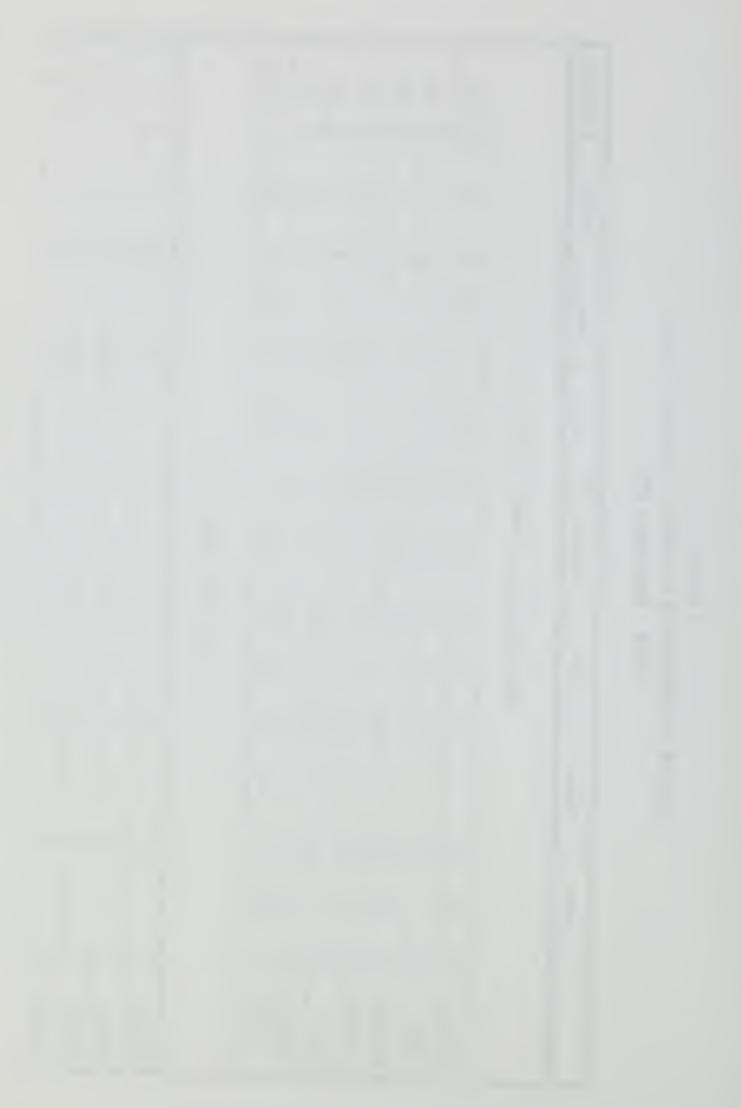
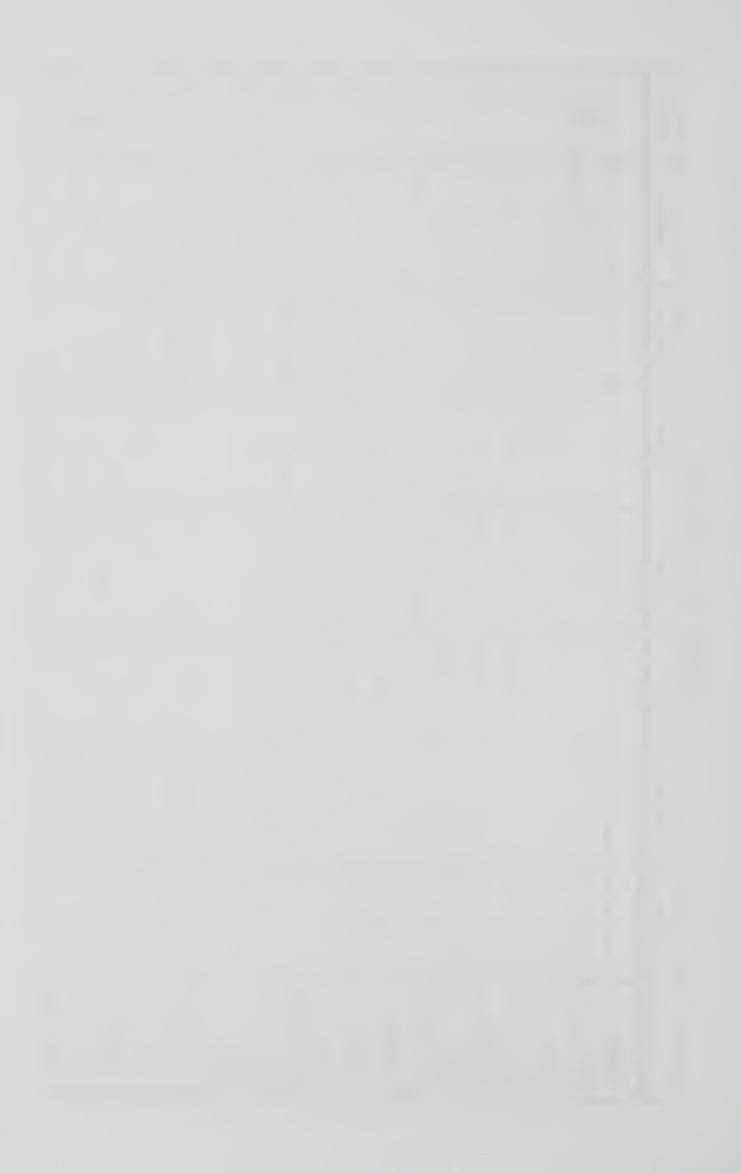



TABLE 2.2 SAMPLE PROFILE BY ORIGIN (Grower/Packer) May - December 1991

	Apples	Banans	Grapes	Grapefruit	Lettuce	Oranges	Potatoes	TOTAL
			Participating	g States (Total = 1,493)	= 1,493)			
California	28		287	111	292	158	55	931
Florida			6	131	2	87	6	238
Michigan	15		-	1 (8)	6		61	45
New York	23		1		3		34	9
Texas	3			4	_	4	24	æ
Washington	101		1		16		64	182
TOTAL	170	0	299	247	323	249	205	1,493
			Other S	Other States (Total = 212)	112)			
Alabama							3	~
Arizona			9	3	19	1	2	34
Colorado							15	15
Delaware							ç	

12



					1 attende			TOTAL
	Appies	Dananas	urapes	OIRpertuit	Telluce	Utaliges	rolatoes .	IUIAL
Georgia	2							2
Idaho	10						53	63
Illinois							2	2
Iowa							1	1
Louisiana						1	1	2
Maine							4	4
Massachusetts	2						1	3
Minnesota	2		1				6	6
Missouri	3							3
Nevada	1							1
New Mexico					2		2	4
New Jersey					-			1
North Carolina	5							S
North Dakota							1	1
Ohio					2			2
Oklahoma							-	1
Oregon	4				-		24	29
Pennsylvania	2						1	3

TABLE 2.2 (continued)

13

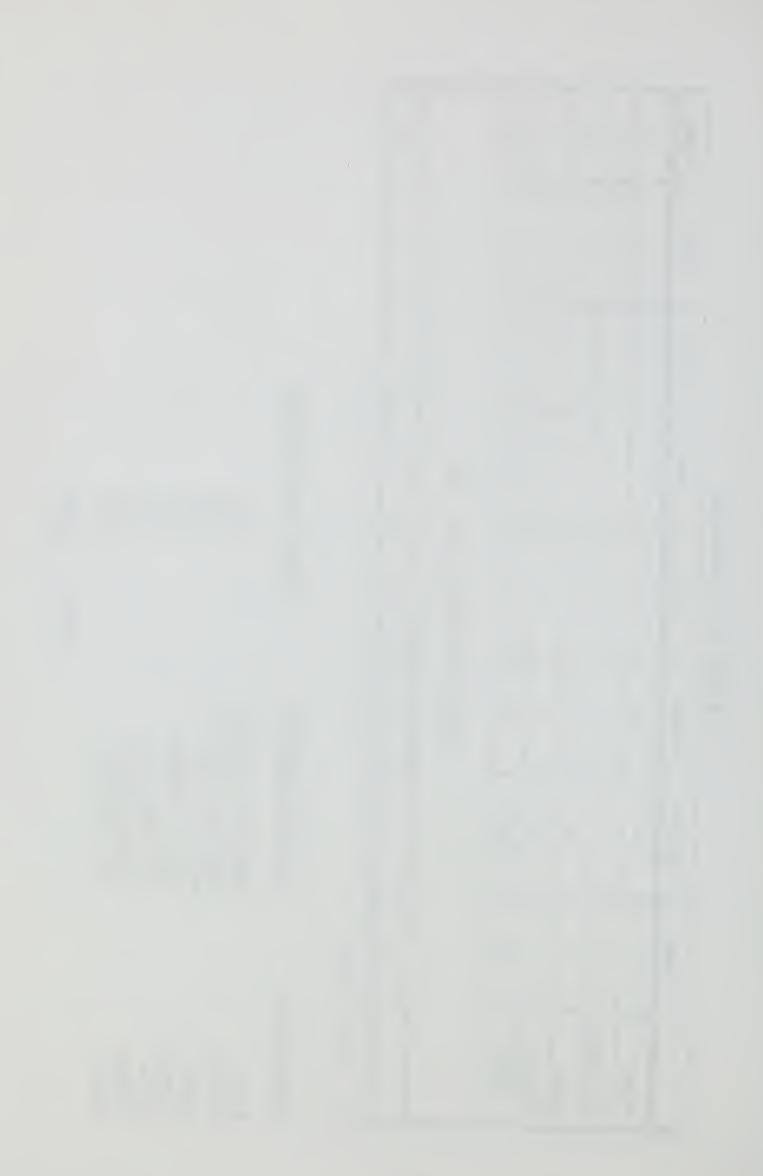
•

			TABLE	E 2.2 (continued)	ued)			
	Apples	Benanas	Grapes	Grapefruit	Lettuce	Oranges	Potatoes	TOTAL
Utah	2							. 2
Vermont	2							2
Virginia	3							3
West Virginia	-							1
Wisconsin							13	13
TOTAL	39	0	10	3	25	2	133	212
			Other Cou	untries (Total = 230)	- 230)			
Bahamas				-				-
Canada	1						2	3
Chile			6					6
Costa Rica		25						25
Colombia		26						26
Dominican Rep.						-		1
Ecuador		75						75
Guatemala		21						21
Honduras		18						18

..... TARLE 22 (C

1

				ucuj			
Apples	Benanas	Grapes	Grapefruit	Lettuce	Oranges	Potatoes	TOTAL
	19	16			-		36
1							-
	10						10
	2	2					4
2	196	29	1	0	2	2	230
		Origin Not	Available (Total $= 28$)	I = 28)			
	7	6	9	3	e		28
							3


TABLE 2.2 (continued)

(a) Origin not verified

COMMODITY	SAMPLING PERIOD	TOTAL # OF
Apples	September - December	211
Bananas	September - December	203
Grapes	May - December	342
Grapefruit	August - December	257
Lettuce	May - December	351
Oranges	August - December	256
Potatoes	May - December	343

DTAL # OF SAMPLES

1,963
TOTAL

SECTION 3.

LABORATORY OVERVIEW

.

3.0 LABORATORY OVERVIEW

3.1 <u>Sample Preparation</u>

Upon receipt at the laboratory, the entire product was examined for sample acceptability. Any product received in poor condition, such as extensive bruising, off odor, decay, and fungal growth, was discarded and not analyzed. For quality control (QC) and productivity, it was imperative that samples be analyzed in sets. The requirements to analyze one sample have the same rigorous criteria as for multiple sample sets. Samples were held up to 72 hours under refrigeration, so that all samples per commodity were received for analysis as a single set.

The entire product was homogenized and at least four representative samples (aliquots) were prepared for testing. Aliquots, which may be needed for replicate or verification testing, were retained frozen. When testing could not be performed immediately, the entire commodity set, plus all quality control samples, were frozen for QC requirements. This ensured that acceptability of data could be verified when analyses were performed at a later date.

In preparing samples for analyses, any debris, wilted leaves, and stems were removed. The product was then rinsed for 15 to 20 seconds under cold tap water to parallel normal consumer preparation. Since, for risk assessment studies, the interest is in analyzing only edible products, the laboratory removed and discarded cores of the product, pits, or other inedible material before the sample was homogenized.

3.2 <u>Sample Analysis</u>

In 1991, each laboratory used its own extraction procedure and detection system, utilizing instrumentation available at the facility. All laboratories were required to meet rigorous quality control criteria, so that data equivalency could be established for the 11 pesticides of interest to EPA and to correlate differences in detection capability for the other pesticides detected in the testing program.

Accepted methodology included the Luke extraction procedures in effect in Florida, Michigan, New York, and Texas. California used its own extraction procedure and Washington used both the California and Luke methods. Elemental selective detectors were used for initial detection of the chlorinated and organophosphate pesticides in the testing system. Verification was accomplished separately, using a retained sample based on several acceptable analytical techniques. Where available, confirmation was achieved using mass spectrometry. Alternate specific detectors or separation systems, providing definitive information on the pesticides in question, were also accepted in the 1991 program.

Participating laboratories provided information on their limits of detection for each of the pesticides which could be detected in their respective systems. These limits are summarized in Table 3.1 by pesticide and State.

second se

3.3 **Quality Control Requirements**

Each laboratory was required to meet the basic data quality objectives of the program before its data was complete. These requirements are:

- o Documented capability of the laboratory staff performing the tests.
- Records of method performance with each set of samples collected as follows:
 (1) pesticide spiked commodities for daily method performance to ascertain pesticide recoveries and laboratory precision;
 (2) reagent and commodity blanks to determine interferences and aid in determining potential pesticides: and,
 (3) pesticide reference standards to establish calibration criteria in calculating pesticide concentrations.
- o A pesticide process standard added to each sample to measure recovery and to ensure that individual tests meet the established quality control standards.

3.4 **Quality Assurance**

All State laboratories participated in a Proficiency Check Sample Program to demonstrate performance and determine laboratory capability on unknown samples. In 1991, two sets of samples consisting of three commodities each, fortified with pesticides in the testing program, were forwarded to each laboratory. The analyzed results on these samples provided valuable information to the laboratories to enhance their internal quality control procedures.

and the second se

TABLE 3.1LIMITS OF DETECTION OF RESIDUESBY STATE

PESTICIDES	CA	FL	MI	NY	ТХ	WA
		PAR	TS PER E	BILLION (a)	
ACEPHATE*	25	10	22	5	10	80
AZINPHOS METHYL	6	NA	NA	3	NA	NA
CAPTAN	10	10	70	3	10	20
CHLORPROPHAM	100	10	60	10	10	960
CHLORPYRIFOS*	10	4	25	2	8	5
CHLORPYRIFOS ME.	10	4	5	4	8	4
DCPA	15	10	8	2	15	20
pp'-DDD	10	3	NA	NA	NA	3
pp'-DDE	9	3	6	2	8	5
pp'-DDT	10	8	NA	2	NA	3
DIAZINON	35	NA	NA	3	7	NA
DICLORAN*	10	4	8	3	15	3
DICOFOL*	80	4	15	3	15	10
DIMETHOATE	55	10	NA	1	NA	NA
ENDOSULFAN I/II	15/7	10/10	7/6	1/2	2/2	6/6
ENDOSULFAN SULFATE	30	10	10	4	2	6
ETHION	NA	2	NA	1	NA	NA
HCB*	10	4	2	1	8	0.6
IMAZALIL	100	NA	15	6	20	400
IPRODIONE*	100	20	50	10	20	30
LINDANE*	10	4	6	2	8	3
MALATHION	NA	10	NA	6	NA	10
METHAMIDOPHOS*	25	10	10	3	10	8
METHIDATHION	NA	4	NA	20	NA	NA

PESTICIDES	CA	FL	MI	NY	ТХ	WA
		PAR	TS PER B	ILLION (a)	
METHYL PARATHION	40	10	NA	NA	NA	10
METHOXYCHLOR*	50	10	50	3	20	6
MYCLOBUTANIL	20	NA	40	10	20	NA
PCP-METHYLSULFIDE	NA	10	NA	NA	NA	NA
PENTACHLOROANILINE	NA	50	NA	NA	NA	NA
PENTACHLOROBENZENE	NA	30	NA	NA	NA	NA
PERMETHRINS*	20	25	100	10	20	30
PHOSMET	100	NA	NA	3	NA	NA
QUINTOZENE* (PCNB)	10	4	5	2	8	1
THIABENDAZOLE	NA	NA	40	NA	NA	NA
VINCLOZOLIN	20	10	40	3	10	6

TABLE 3.1 (continued)

* EPA recommended pesticides.

CA: California

FL: Florida

MI: Michigan

NY: New York

TX: Texas

WA: Washington

(a) These values are based on the current instrumentation available in the laboratories

NA Not available

SECTION 4.

SAMPLE RESULTS

4.0 SAMPLE RESULTS

In 1991, a total of 1,901 samples were analyzed out of 1,963 samples collected. Nine data sets consisting of 62 samples from Michigan for November and December 1991, have not been included in the report due to delays in analyzing samples.

All samples were analyzed according to the pesticide testing plans for each month. From May through December 1991, these pesticides were: chlorpyrifos, dicloran, hexachlorobenzene (HCB), iprodione, lindane, methoxychlor, permethrins, and quintozene (PCNB). In October 1991, dicofol was added as part of the testing profile for all 6 States, and in November 1991, acephate and methamidophos were added for a total of 11 pesticides. In addition, 24 other pesticides were detected, however, capability for detection and detection limits varied by State, as shown in Table 3.1. Ten of these pesticides were added as part of the testing profile in October 1991, for all State laboratories based on the following selected commodities:

Grapes:	Captan, endosulfan I, II and sulfate, myclobutanil, and vinclozolin
Grapefruit:	Imazalil
Oranges:	Imazalil
Lettuce:	DCPA
Potatoes:	Chlorpropham (CIPC), and p,p' DDE

Thirteen additional pesticides listed in Table 4.1 were detected in at least one of the seven commodities tested after October 1, 1991, and listed by State in Table 4.2. Michigan had the capability of detecting thiabendazole using a multiresidue screen by employing mass spectrometry detection. In Table 4.2, the only pesticide/commodity pairs from EPA list detected in all six States were dicloran and iprodione in grapes. Chlorpropham in potatoes was reported in all States except Florida.

There were a total of 422 samples, 22 percent, having pesticide residues. This ranges from 74 out of 197 samples, 38 percent, with 15 different residues for apples, to bananas, where no residues were detected. The descending order of the percentage of samples in which residues were detected in the other 5 commodities are: grapes (34 percent), potatoes (27 percent), oranges (19 percent), lettuce (17 percent), and grapefruit (16 percent). Ten of the 11 pesticides of initial interest to EPA were detected in at least one commodity, except for HCB. Of the 24 pesticide/commodity pairs in Table 1.1, nine pairs had at least one sample which contained a detectable level of pesticide residue, i.e., a positive sample.

There were four violations, listed in Table 4.1. They were iprodione and acephate in apples, chlorpyrifos in lettuce, and pentachlorobenzene in potatoes. In all cases, there were no established tolerances for that particular commodity and pesticide shown in Table 4.2, and each of them was from a different State.

Appendix B is a compilation of total pesticide residues detected. In all there were 511 residue findings representing 34 different pesticides in the 1,901 samples analyzed. For the 11 pesticides on the EPA list, there were 199 residue findings. Appendix B lists all of the

the second se

pesticides detected by total number of samples, number of positive findings, percent of positive samples, and mean value of the residue detected. For the 11 pesticides on the initial test list, all results were listed, even if residues were not detected. For the other pesticides reported, only those commodities where residues were detected are listed.

The pesticide/commodity pairs from the EPA list showing the largest number/percentage of pesticide detections were: iprodione/grapes (50/15.2 percent), dicloran/grapes (48/14.6 percent), chlorpyrifos/apples (31/15.7 percent), and permethrins/lettuce (33/9.4 percent). The mean residue concentration detected were respectively; 0.28 ppm, 0.24 ppm, 28 ppb, 0.58 ppm. These 4 pairs accounted for 130 or 64 percent of the 199 residue findings for the 11 pesticides of initial EPA interest.

For the other pesticides reported by commodity, the most prevalent pesticides detected in apples were azinphos methyl in 15.7 percent of the samples with a mean concentration of 0.10 ppm, applicable to apples collected after October 31, 1991, and captan in 8.6 percent of the samples with a mean concentration of 86 ppb. In potatoes, chlorpropham (CIPC) was detected in 17.9 percent of the samples tested from May 1991, with a mean concentration of 1.11 ppm. Michigan detected thiabendazole in approximately 60 percent of the citrus fruit tested.

Appendix C is a use and toxicology profile of the pesticides. These pesticides were either in the testing plans or detected in commodities tested in 1991. They covered a wide spectrum of use compounds from insecticides, fungicides, post-harvest fungicides, herbicides, acaricides, manufacturing impurities, and metabolites of compounds included in the testing profile.

TABLE 4.1DISTRIBUTION OF RESIDUES DETECTEDBY COMMODITY

PESTICIDES DETECTED	NUMBER OF SAMPLES ANALYZED	NUMBER OF POSITIVE SAMPLES	PERCENT OF POSITIVE SAMPLES
	APPLES		
Acephate (v) Azinphosmethyl Captan Chlorpyrifos* Diazinon Dicofol* Dimethoate Ethion Endosulfan I & II Endosulfan Sulfate Iprodione (v) Methoxychlor* Methyl Parathion Phosmet Total = 15	. 197	74	38
	BANANAS	5	
None	197	0	0
Total = 0			
	GRAPEFRU	IT	
Chlorpyrifos* Ethion Imazalil Thiabendazole	250	39	16
Total = 4			

			T
PESTICIDES DETECTED	NUMBER OF SAMPLES ANALYZED	NUMBER OF POSITIVE SAMPLES	PERCENT OF POSITIVE SAMPLES
	GRAPES		
Captan Dicloran* Dimethoate Dicofol Endosulfan I & II Endosulfan Sulfate Iprodione* Lindane Myclobutanil Quintozene Vinclozolin	328	113	34
Total = 12		• • •	
	LETTUCE	C	
Acephate* Chlorpyrifos (v) DCPA Diazinon Dicloran* DDE Endosulfan I & II Endosulfan Sulfate Methamidophos* Permethrins*	351	59	17
Total = 11			
	ORANGES	5	
Chlorpyrifos* Dicofol Ethion Imazalil Malathion Methidathion Thiabendazole	242	46	19
Total = 7			

TABLE 4.1 (continued)

-

TABLE 4.1 (continued)

PESTICIDES. DETECTED	NUMBER OF SAMPLES ANALYZED	NUMBER OF POSITIVE SAMPLES	PERCENT OF POSITIVE SAMPLES
	ΡΟΤΑΤΟΕ	S	
Captan Chlorpropham DDD DDE DDT Diazinon Dicloran* Ethion Endosulfan I & II Endosulfan Sulfate Quintozene PCP Methylsulfide Pentachloroaniline Pentachlorobenzene(v) Total = 15	336	91	27
PESTICIDES DETECTED TOTAL	SAMPLES ANALYZED TOTAL (a)	POSITIVE SAMPLES TOTAL (b)	PERCENT OF POSITIVE SAMPLES
34	1,901	422	22

Pesticide/commodity pairs of interest to EPA. *

Does not include the State of Michigan samples for the following: (a) November -- apples, grapefruit, grapes, and oranges. December -- apples, bananas, grapes, oranges, and potatoes. More than one residue may have been detected in some of the positive samples.

(b)

Violation: residues found where no tolerance was established. (v)

TABLE 4.2RESIDUECONCENTRATION LEVELSANDSTATE DISTRIBUTION

PESTICIDE	COMMODITY	STATES	MIN.	MAX.	TOLER- ANCE (ppm)**
Acephate*	Apples(v)	TX	17 B	17 B	None
	Lettuce*	CA, NY	8 B	34 B	10
Azinphos-Methyl	Apples	CA, NY	5 B	0.31 M	2.0
Captan	Apples	FL, NY, TX	10 B	0.17 M	25
	Grapes	NY, TX	16 B	0.57 M	50
	Potatoes	MI	0.17 M	0.23 M	251
Chlorpropham	Potatoes	CA,MI,NY, TX,WA	10 B	10 M	50
Chlorpyrifos*	Apples*	CA, FL, NY, TX	3 B	85 B	1.5
	Grapefruit*	TX	19 B	30 B	1.0
	Lettuce (v)	СА	50 B	50 B	None ²
	Oranges*	TX	0.12 M	0.36 M	1.0
DCPA	Lettuce	CA, WA	8 B	30 B	2
pp'-DDE	Potatoes	CA, FL, NY, TX	3 B	27 B	13
	Lettuce	CA, NY	9 B	30 B	0.5 ³
pp'-DDD	Potatoes	FL	3 B	3 B	1 ³
pp'-DDT	Potatoes	FL, NY	8 B	29 B	1 ³
Diazinon	Apples	СА	35 B	35 B	0.5
	Lettuce	CA	57 B	57 B	0.7
	Potatoes	TX	7 B	8 B	0.1
Dicloran*	Potatoes*	NY, WA	10 B	0.11 M	0.25
	Grapes*	CA,FL,MI, NY,TX,WA	2B	1.1 M	10
	Lettuce*	CA	6 B	0.12 M	10

PESTICIDE	COMMODITY	STATES	MIN.	MAX.	TOLER- ANCE (ppm)**
Dicofol*	Apples	CA, NY	59 B	0.60 M	5
	Grapes	CA, FL, NY, TX	4 B	0.46 M	5
	Oranges*	FL	20 B	75 B	10
Dimethoate	Apples	CA, NY	20 B	0.35 M	2
	Grapes	FL	0.25 M	0.25 M	1
Endosulfans	Apples	CA, TX	13 B	56 B	2.0
	Grapes	CA, NY, TX	4 B	0.13 M	2.0
	Lettuce	CA, NY, TX, WA	11 B	0.21 M	2.0
	Potatoes	NY, TX	8 B	16 B	0.24
Endosulfan Sulfate	Apples	CA, NY, TX, WA	10 B	19 B	2.0
	Grapes	CA, NY, TX	10 B	44 B	2.0
	Lettuce	NY, TX, WA	9 B	80 B	2.0
	Potatoes	NY, TX	5 B	98 B	0.24
Ethion	Apples	CA	0.36 M	0.36 M	2.0
	Grapefruit	FL	2 B	2 B	2.0
	Oranges	FL, NY	2 B	24 B	2.0
Imazalil	Grapefruit	MI, NY, TX	11 B	0.30 M	10
	Oranges	NY, TX	6 B	0.44 M	10
Iprodione*	Apples (v)	WA	0.18 M	0.18 M	None
	Grapes*	CA,FL,MI, NY,TX,WA	10 B	1.1 M	60.0
Lindane*	Grapes	NY	34 B	34 B	1
Malathion	Oranges	NY	6 B	0.17 M	8
Methidathion	Oranges	FL, NY	4 B	19 B	2.0

 TABLE 4.2 (continued)

PESTICIDE	COMMODITY	STATES	MIN.	MAX.	TOLER- ANCE (ppm)**
Methamidophos*	Lettuce*	ТХ	43 B	43 B	1.0
Methyl Parathion	Apples	CA	43 B	0.15 M	1
Methoxychlor*	Apples*	FL, WA	60 B	0.24 M	14
Myclobutanil	Grapes	CA, MI, NY, TX	19 B	0.17 M	1.0
PCP- Methylsulfide (a)	Potatoes	FL	10 B	10 B	0.15
Pentachloroaniline (a)	Potatoes	FL	50 B	50 B	0.1 ⁵
Pentachlorobenzene	Potatoes (v)	FL	30 B	30 B	None
Permethrins* (both)	Lettuce*	CA, NY, TX, WA	0.11 M	3.3 M	20.0
Phosmet	Apples	CA, NY	11 B	0.44 M	10
8	Grapes	NY	39 B	39 B	10
Quintozene* (PCNB)	Potatoes	CA, FL, WA	3 B	40 B	0.11
Thiabendazole	Grapefruit	MI	39 B	0.27 M	10
	Oranges	MI	0.12 M	0.43 M	10
Vinclozolin	Grapes	FL, NY	33 B	0.27 M	6.0

 TABLE 4.2 (continued)

* Pesticide/ commodity pairs of interest to EPA.

** Tolerances' significant figures as expressed in the 40 CFR, Part 180.

(v) Violation: residues found where tolerances were not established.

1 Interim tolerance.

2 Tolerance not established although there is a pending tolerance listed at 40 CFR Part 180.342.

3 Tolerances for DDT, DDE, DDD as individual or in combination were revoked on 12/24/86. Numbers cited are administrative guidelines/action levels.

4 Negligible residue tolerance.

5 Administrative guidelines.

M Parts per million.

B Parts per billion.

APPENDICES

APPENDIX A PROPOSED STATE SAMPLING PLANS

FROM MID-MAY 1991

MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
13	14	15	16 NY Grapes, 5	17
20 NY Potatoes, 1	21 NY Potatoes, 3	22 FL Grapes, 4	23 NY Potatoes, 1	24
27	28 FL Lettuce, 4 NY Lettuce, 1 WA Grapes, 2 WA Lettuce, 3 WA Potatoes, 3	29 FL Potatoes, 4 NY Lettuce, 3	30 NY Lettuce, 1	31

Commodity Proposed Sampling Dates

 Grapes:
 16th, 22nd, 28th

 Lettuce:
 28th, 29th, 30th

 Potatoes:
 20th, 21st, 23rd, 28th, 29th

TOTAL NUMBER OF SAMPLES: 35

the second process

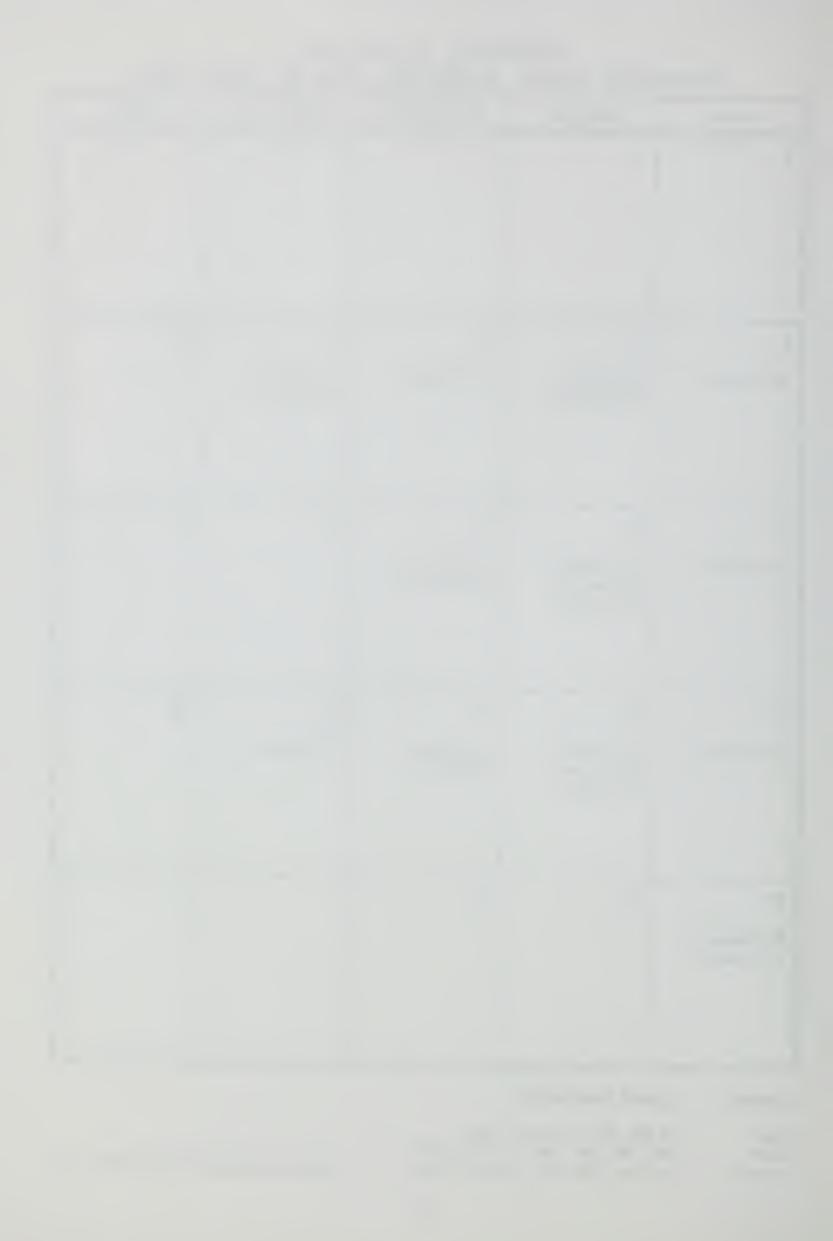
APPENDIX A (continued) PROPOSED STATE SAMPLING PLANS -- JUNE 1991

MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	
-	-				
3	4 FL Grapes, 4 TX Potatoes, 4	5 TX, Potatoes, 1	6	7	
1011NY Grapes, 6FL Lettuce, 5TX Grapes, 7NY Grapes, 1WA Grapes, 2WA Grapes, 3WA Lettuce, 2WA Lettuce, 3WA Potatoes, 2WA Potatoes, 3		12 TX Lettuce, 6	13	14	
17 NY Potatoes, 6	18 FL Potatoes, 6 NY Potatoes, 1	19	20	21	
24 MI Lettuce, 2 NY Lettuce, 3	25 MI Lettuce, 2 NY Lettuce, 7	26 MI Lettuce, 2	27	28	
	-				

Commodity Proposed Sampling Dates

Grapes:4th, 10th, 11thLettuce:10th, 11th, 12th, 24th, 25th, 26thPotatoes:4th, 5th, 10th, 11th, 17th, 18th

TOTAL NUMBER OF SAMPLES: 78


APPENDIX A (continued) PROPOSED STATE SAMPLING PLANS -- JULY 1991

MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
1	2	3	4	5
8 WA Grapes, 5	9 NY Grapes, 9 TX Potatoes, 9	10 CA Lettuce, 7	11 CA Lettuce, 7 MI Potatoes, 7	12
15 WA Lettuce, 5	16 CA Potatoes, 7 NY Lettuce, 9 TX Grapes, 9	17 CA Potatoes, 7 FL Lettuce, 8	18	19
22 WA Potatoes, 5	23 FL Grapes, 8 NY Potatoes, 9 TX Lettuce, 9	24 CA Grapes, 7 MI Grapes, 7	25 CA Grapes, 7	26
29 FL Potatoes, 8 MI Lettuce, 7	30	31		

Commodity Proposed Sampling Dates

Grapes:8th, 9th, 16th, 23rd, 24th, 25thLettuce:10th, 11th, 15th, 16th, 17th, 23rd, 29thPotatoes:9th, 11th, 16th, 17th, 22nd, 23rd, 29th

TOTAL NUMBER OF SAMPLES: 156

APPENDIX A (continued) **PROPOSED STATE SAMPLING PLANS -- AUGUST 1991**

MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
-			1	2
5 NY Oranges, 9 WA Lettuce, 5	6 CA Oranges, 7 FL Grapes, 8 NY Grapes, 9 TX Potatoes, 9	7 CA Oranges, 7	8 MI Grapefruit, 7	9
12 NY Grapefruit, 9 TX Grapes, 9 WA Grapefruit, 5	13 CA Grapes, 7 FL Lettuce, 8 MI Potatoes, 7	14 CA Grapes, 7 NY Potatoes, 9 WA Grapes, 5	15 TX Lettuce, 9	16
19 CA Potatoes, 7 WA Potatoes, 5	20 CA Potatoes, 7 FL Oranges, 8 TX Oranges, 9	21 CA Grapefruit, 7 FL Potatoes, 8 MI Grapes, 7 NY Lettuce, 9	22 CA Grapefruit, 7	23
26 MI Oranges, 7 WA Oranges, 5	27 CA Lettuce, 7 FL Grapefruit, 8	28 CA Lettuce, 7 MI Lettuce, 7 TX Grapefruit, 9	29	30

Commodity **Proposed Sampling Dates**

6th, 12th, 13th, 14th, 21st Grapes: 8th, 12th, 21st, 22nd, 27th, 28th Grapefruit: 5th, 13th, 15th, 21st, 27th, 28th Lettuce: 5th, 6th, 7th, 20th, 26th Oranges:

Potatoes:

6th, 13th, 14th, 19th, 20th, 21st

TOTAL NUMBER OF SAMPLES: 261

APPENDIX A (continued) PROPOSED STATE SAMPLING PLANS -- SEPTEMBER 1991

MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
2 3 CA Lettuce, 7 MI Bananas, 7 NY Apples, 9 WA Apples, 5		4 CA Lettuce, 7 MI Grapefruit, 7 NY Grapes, 9 TX Potatoes, 9	5 FL Apples, 8 WA Lettuce, 5	6
9 CA Grapes, 7 TX Grapes, 9	10 CA Grapes, 7 FL Oranges, 8	11 CA Bananas, 7 FL Potatoes, 8 MI Lettuce, 7 NY Grapefruit, 9 NY Oranges, 9 TX Lettuce, 9 WA Grapefruit, 5	12 CA Bananas, 7	13
16 CA Grapefruit, 7 MI Oranges, 7 TX Oranges, 9 WA Oranges, 5	17 CA Grapefruit, 7 FL Bananas, 8 NY Bananas, 9	18 CA Apples, 7 FL Lettuce, 8 MI Apples, 7 TX Grapefruit, 9 WA Potatoes, 5	19 CA Apples, 7 MI Grapes, 7 NY Lettuce, 9	20
23 CA Potatoes, 7 NY Potatoes, 9 TX Apples, 9 WA Grapes, 5	24 CA Potatoes, 7 FL Grapefruit, 8	25 CA Oranges, 7 FL Grapes, 8 MI Potatoes, 7 TX Bananas, 9 WA Bananas, 5	26 CA Oranges, 7	27
30				

Commodity

Proposed Sampling Dates

Apples:	3rd, 5th, 18th, 19th, 23rd
Bananas:	3rd, 11th, 12th, 17th, 25th
Grapes:	4th, 9th, 10th, 19th, 23rd, 25th
Grapefruit:	4th, 11th, 16th, 17th, 18th, 24th
Lettuce:	3rd, 4th, 5th, 11th, 18th, 19th

Oranges: Potatoes: 10th, 11th, 16th, 25th, 26th 4th, 11th, 18th, 23rd, 24th, 25th

TOTAL NUMBER OF SAMPLES: 364

APPENDIX A (continued) PROPOSED STATE SAMPLING PLANS -- OCTOBER 1991

MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
1 MI Apples, 7 NY Oranges, 9		2 CA Grapes, 7 FL Potatoes, 8 TX Potatoes, 9	3 CA Grapes, 7 NY Grapes, 9	4
7 NY Potatoes, 9 TX Grapes, 9	8 FL Oranges, 8 MI Bananas, 7 MI Lettuce, 7 NY Apples, 9	9 CA Oranges, 7 FL Apples, 8 TX Lettuce, 9	10 CA Oranges, 7	11
14 TX Oranges, 9	15 FL Lettuce, 8	16 CA Potatoes, 7 NY Grapefruit, 9 TX Grapefruit, 9 WA Oranges, 5	17 CA Potatoes, 7	18
21 CA Grapefruit, 7 MI Grapefruit, 7 NY Bananas, 9 TX Apples, 9 WA Grapefruit, 5 WA Bananas, 5	22 CA Grapefruit, 7 FL Grapes, 8	23 CA Lettuce, 7 FL Grapefruit, 8 TX Bananas, 9	24 CA Lettuce, 7	25
28 CA Bananas, 7 MI Potatoes, 7 NY Lettuce, 9 WA Grapes, 5	29 CA Bananas, 7 FL Bananas, 8 WA Apples, 5 WA Lettuce, 5	30 CA Apples, 7 MI Grapes, 7 MI Oranges, 7 WA Potatoes, 5	31 CA Apples, 7	

Commodity Proposed Sampling Dates

Apples:	1st, 8th, 9th, 21st, 29th, 30th, 31st
Bananas:	8th, 21st, 23rd, 28th, 29th
Grapes:	2nd, 3rd, 7th, 22nd, 28th
Grapefruit:	16th, 21st, 22nd, 23rd
Lettuce:	8th, 9th, 15th, 23rd, 24th, 28th, 29th

Oranges: Potatoes: 1st, 8th, 9th, 10th, 14th, 16th, 30th 2nd, 7th, 16th, 17th, 28th, 30th

TOTAL NUMBER OF SAMPLES: 364

APPENDIX A (continued) PROPOSED STATE SAMPLING PLANS -- NOVEMBER 1991

MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
-	-			1
4 CA Potatoes, 7 TX Potatoes, 9 WA Oranges, 5	5 CA Potatoes, 7 FL Lettuce, 8	6 CA Oranges, 7 FL Oranges, 8 MI Bananas, 7 MI Oranges, 7 NY Grapefruit, 9 TX Grapes, 9 WA Bananas, 5	7 CA Oranges, 7	8
11	12 CA Lettuce, 7 FL Apples, 8 FL Potatoes, 8 MI Grapes, 7 NY Oranges, 9 TX Lettuce, 9 WA Grapefruit, 5	13 CA Lettuce, 7 NY Potatoes, 9 TX Oranges, 9 WA Potatoes, 5	14 CA Bananas, 7	15 CA Bananas, 7
18 CA Grapefruit, 7 NY-Lettuce, 9 TX-Grapefruit, 9 WA-Lettuce, 5	19 CA Grapefruit, 7 FL Grapes, 8 FL Grapefruit, 8 TX Apples, 9	20 CA Apples, 7 FL Bananas, 8 MI Potatoes, 7 NY Apples, 9 TX Bananas, 9	21 CA Apples, 7 MI Lettuce, 7	22
25 CA Grapes, 7 MI Grapefruit, 7 NY Bananas, 9 WA Grapes, 5	26 CA Grapes, 7 MI Apples, 7 NY Grapes, 9 WA Apples, 5	27	28	29

Commodity Proposed Sampling Dates

Apples:	12th, 19th, 20th, 21st, 26th
Bananas:	6th, 14th, 15th, 20th, 25th
Grapes:	6th, 12th, 19th, 25th, 26th
Grapefruit:	12th, 18th, 19th, 25th
Lettuce:	5th, 12th, 13th, 18th, 21st

Oranges: Potatoes: 4th, 6th, 12th, 13th 4th, 5th, 12th, 13th, 20th

TOTAL NUMBER OF SAMPLES: 364

APPENDIX A (continued) PROPOSED STATE SAMPLING PLANS -- DECEMBER 1991

MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
2 CA Lettuce, 7 NY Potatoes, 9 TX Potatoes, 9 WA Grapes, 5	3 CA Lettuce, 7 FL Potatoes, 8 FL Grapes, 8 MI Oranges, 7 TX Grapes, 9	4 CA Apples, 7 FL Grapefruit, 8 MI Appies, 7 NY Grapefruit, 9 TX Lettuce, 9 WA Potatoes, 5	5 CA Apples, 7 MI Potatoes, 7	6
9 CA Grapes, 7 MI Bananas, 7 TX Oranges, 9 WA Lettuce, 5	10 CA Grapes, 7 FL Oranges, 8 NY Grapes, 9	11 CA Potatoes, 7 FL Bananas, 8 MI Grapefruit, 7 NY Bananas, 9 TX Grapefruit, 9 WA Apples, 5	12 CA Potatoes, 7	13
16 CA Oranges, 7 MI Grapes, 7 TX Apples, 9 WA Bananas, 5	17 CA Oranges, 7 FL Lettuce, 8 FL Apples, 8 NY Apples, 9	18 CA Bananas, 7 MI Lettuce, 7 TX Bananas, 9 WA Grapefruit, 5	19 CA Bananas, 7 NY Lettuce, 9	20
23	24	25	26	27
30 CA Grapefruit, 7 NY Oranges, 9 WA Oranges, 5	31 CA Grapefruit, 7			

Commodity Proposed Sampling Dates

Apples:	4th, 5th, 11th, 16th, 17th
Bananas:	9th, 11th, 16th, 18th, 19th
Grapes:	2nd, 3rd, 9th, 10th, 16th
Grapefruit:	4th, 11th, 18th, 30th, 31st
Lettuce:	2nd, 3rd, 4th, 9th, 17th, 18th, 19th

Oranges: 31 Potatoes: 21

3rd, 9th, 10th, 16th, 17th, 30th 2nd, 3rd, 4th, 5th, 12th

TOTAL NUMBER OF SAMPLES: 364

APPENDIX B DISTRIBUTION OF RESIDUES DETECTED BY PESTICIDE May-December 1991

		SUMMARY OF RESULTS			
MONTHS	COMMODITIES	NUMBER	POSITI	VE SAMP	LES (a)
		OF Number SAMPLES	Number	Percent	Mean (b)
	ACE	PHATE*	Total	of positive	es = 3
Nov-Dec	Apples (v)	90	1	1.1	17 B
Nov-Dec	Bananas	97	0	0	0
Nov-Dec	Grapefruit	97	0	0	0
Nov-Dec	Grapes	90	0	0	0
Nov-Dec	Lettuce*	104	2	1.9	21 B
Nov-Dec	Oranges	90	0	0	0
Nov-Dec	Potatoes	97	0	0	0
	CHLOR	PYRIFOS*	Total	of positive	s = 36
Sept-Dec	Apples*	197	31	15.7	28 B
Sept-Dec	Bananas*	197	0	0	0
Aug-Dec	Grapefruit*	250	2	0.8	25 B
May-Dec	Grapes*	328	0	0	0
May-Dec	Lettuce (v)	351	1	0.3	50 B
Aug-Dec	Oranges*	242	2	0.8	0.24 M
May-Dec	Potatoes	336	0	0	0
	DICI	ORAN*	Total	of positive	s = 52
Sept-Dec	Apples	197	0	0	0
Sept-Dec	Bananas	197	0	0	0
Aug-Dec	Grapefruit	250	0	0	0

-	COMMODITIES	SUMMARY OF RESULTS			
MONTHS		NUMBER	POSITIVE SAMPLES (a)		
		OF SAMPLES	Number	Percent	Mean (b)
	DICLORA	N* (continued)			
May-Dec	Grapes*	328	48	14.6	0.24 M
May-Dec	Lettuce*	351	2	0.6	63 B
Aug-Dec	Oranges	242	0	0	0
May-Dec	Potatoes*	336	2	0.6	60 B
	DICOFOL* Total of positives = 10				
Aug-Dec	Apples*	197	3	1.5	0.29 M
Aug-Dec	Bananas	197	0	0	0
Aug-Dec	Grapefruit*	250	0	0	0
Aug-Dec	Grapes	245	11	4.5	0.21 M
Aug-Dec	Lettuce	258	0	0	0
Aug-Dec	Oranges*	242	2	0.8	48 B
Aug-Dec	Potatoes	249	0	0	0
	HCB* (Hexa	chlorobenzene)	Total	of positive	s = 0
Sept-Dec	Apples	197	0	0	0
Sept-Dec	Bananas*	197	0	0	0
Aug-Dec	Grapefruit	250	0	0	0
May-Dec	Grapes	328	0	0	0
May-Dec	Lettuce	351	0	0	0
Aug-Dec	Oranges	242	0	0	0
May-Dec	Potatoes	336	0	0	0

		SUMMARY OF RESULTS				
MONTHS	COMMODITIES	NUMBER	POSITI	POSITIVE SAMPLES (a)		
		OF SAMPLES	Number	Percent	Mean (b)	
	IPRO	DIONE*	Total	of positive	s = 51	
Sept-Dec	Apples(v)	197	1	0.5	0.18 M	
Sept-Dec	Bananas	197	0	0	0	
Aug-Dec	Grapefruit	250	0	0	0	
May-Dec	Grapes*	328	50	15.2	0.28 M	
May-Dec	Lettuce*	351	0	0	0	
Aug-Dec	Oranges	242	0	0	0	
May-Dec	Potatoes	343	0	0	0	
	LIN	DANE*	Total of positives $= 1$			
Sept-Dec	Apples	197	0	0	0	
Sept-Dec	Bananas	197	0	0	0	
Aug-Dec	Grapefruit	250	0	0	0	
May-Dec	Grapes	328	1	0.3	34 B	
May-Dec	Lettuce*	351	0	0	0	
Aug-Dec	Oranges	242	0	0	0	
May-Dec	Potatoes	336	0	0	0	
	METHAN	1IDOPHOS*	Total	of positive	s = 1	
Nov-Dec	Apples	90	0	0	0	
Nov-Dec	Bananas	97	0	0	0	
Nov-Dec	Grapefruit	97	0	0	0	
Nov-Dec	Grapes	90	0	0	0	
Nov-Dec	Lettuce*	104	1	1.0	43 B	

.

the second se

-		SUM	MARY OF	RESULTS	5
MONTHS	COMMODITIES	NUMBER	POSITIVE SAMPLES (a)		
		OF SAMPLES	Number	Percent	Mean (b)
	METHAMIDO	PHOS* (continu	ied)		
Nov-Dec	Oranges	90	0	0	•
Nov-Dec	Potatoes*	97	0	0	0
	METHO	OXYCHLOR* Total of positives = 2			es = 2
Sept-Dec	Apples*	197	2	1.0	0.15 M
Sept-Dec	Bananas	197	0	0	0
Aug-Dec	Grapefruit	250	0	0	0
May-Dec	Grapes*	328	0	0	0
May-Dec	Lettuce	351	0	0	0
Aug-Dec	Oranges	242	0	0	0
May-Dec	Potatoes	336	0	0	0
	PERME	THRINS*	Total	of positive	s = 33
Sept-Dec	Apples*	197	0	0	0
Sept-Dec	Bananas	197	0	0	0
Aug-Dec	Grapefruit	250	0	0	0
Sept-Dec	Grapes	328	0	0	0
May-Dec	Lettuce*	351	33	9.4	0.58 M
Aug-Dec	Oranges	242	0	0	0
May-Dec	Potatoes*	336	0	0	0
	QUINTOZ	ENE* (PCNB)	Total	of positive	s = 4
Sept-Dec	Apples	197	0	0	0
Sept-Dec	Bananas*	197	0	0	0
Aug-Dec	Grapefruit	250	0	0	0

-		SUM	UMMARY OF RESULTS				
MONTHS	COMMODITIES	NUMBER	POSITI	VE SAMPLES (a)			
		OF SAMPLES	Number	Percent	Mean (b)		
	QUINTOZENE*	(PCNB) (contin	nued)				
May-Dec	Grapes	328	0	0	0		
May-Dec	Lettuce	351	0	0	0		
Aug-Dec	Oranges	242	Q	0	0		
May-Dec	Potatoes	336	4	1.2	7 B		
	OTHER I	PESTICIDES					
	AZINPHO	S METHYL	Total	of positive	s = 14		
Nov-Dec	Apples	90	14	15.6	0.10 M		
	CA	PTAN	Total of positives $= 23$				
Sept-Dec	Apples	197	17	8.6	86 B		
May-Dec	Grapes	328	4	1.2	0.21 M		
May-Dec	Potatoes	336	2	0.6	0.20 M		
	CHLOR	PROPHAM	Total	of positive	s = 60		
May-Dec	Potatoes	336	60	17.9	1.11 M		
	D	СРА	Total	of positive	s = 9		
Aug-Dec	Lettuce	258	9	3.5	21 B		
	pp'	-DDD	Total	of positive	s = 1		
May-Dec	Potatoes	336	1	0.3	3 B		
	pp	-DDE	Total	of positive	s = 14		
Aug-Dec	Lettuce	258	3	1.2	20 B		
May-Dec	Potatoes	336	11	3.3	13 B		

the second second

		SUMMARY OF RESULTS			
MONTHS	COMMODITIES	NUMBER	POSITIVE SAMPLES (a)		
		OF SAMPLES	Number	Percent	Mean (b)
	рр	'-DDT	Total	of positive	es = 2
Jun-Dec	Potatoes	324	2	0.6	19 B
DIAZINON			Total	of positive	es = 3
Sept-Dec	Apples	197	1	0.5	35 B
Nov-Dec	Lettuce	97	1	1.6	57 B
Jun-Dec	Potatoes	324	1	0.3	7 B
DIMETHOATE Total of positives =				es = 8	
Nov-Dec	Apples	90	7	7.8	0.12 M
Nov-Dec	Grapes	90	1	1.1	0.25 M
	ENDOSUL	FAN I AND II	Total	of positive	es = 23
Nov-Dec	Apples	90	8	7.8	29 B
Aug-Dec	Grapes	245	8	3.3	36 B
Jun-Dec	Potatoes	324	3	0.9	13 B
Oct-Dec	Lettuce	156	5	3.2	60 B
	ENDOSULE	TAN SULFATE	Total	of positive	es = 29
Nov-Dec	Apples	90	1	4.4	12 B
Aug-Dec	Grapes	245	4	1.6	26 B
Oct-Dec	Lettuce	156	5	3.2	64 B
Jun-Dec	Potatoes	324	16	4.9	22 B
	ET	HION	Total	of positive	s = 6
Nov-Dec	Apples	90	4	1.1	0.36 M
Sept-Dec	Grapefruit	197	1	0.5	12 B
Sept-Dec	Oranges	194	4	2.1	10 B

and the second sec

		SUMMARY OF RESULTS					
MONTHS	COMMODITIES	NUMBER	POSITIVE SAMPLES (a)				
		OF SAMPLES	Number	Percent	Mean (b)		
	IMA	ZALIL	Total	of positive	s = 50		
Aug-Dec	Grapefruit	250	22	8.8	0.15 M		
Aug-Dec	Oranges	242	28	11.6	0.15 M		
	MAL	Total of positives $= 3$					
Nov-Dec	Oranges	90	3	3.3	60 B		
	METHI	DATHION	Total of positives = 2				
Aug-Dec	Oranges	242	2	0.8	12 B		
	METHYL	PARATHION	Total	of positive	s = 2		
Oct-Dec	Apples	149	2	1.3	97 B		
	MYCLO	BUTANIL	Total	of positive	s = 20		
Jul-Dec	Grapes	295	20	6.8	88 B		
	PCP- METH	YLSULFIDE (c	c) Total	of positive	s = 1		
Sept-Dec	Potatoes	194	1	0.5	10 B		
	PENTACHLO	ROANILINE (c) Total	of positive	s = 1		
Sept-Dec	Potatoes	194	1	0.5	50 B		
PENTACHLOROBENZENE Total of positives = 1							
Sept-Dec	Potatoes (v)	194	1	0.5	30 B		
	РНС	OSMET	Total	of positive	s = 6		
Sept-Dec	Apples	197	5	2.5	0.18 M		
Nov-Dec	Grapes	90	1	1.1	39 B		

MONTHS	COMMODITIES	SUMMARY OF RESULTS					
		NUMBER	POSITIVE SAMPLES (a)				
		OF SAMPLES	Number	Percent	Mean (b)		
THIABENDAZOLE (d) Total of positives = 29							
Aug-Oct, Dec	Grapefruit	28	16	57.1	90 B		
Aug-Oct	Oranges	21	13	61.9	0.26 M		
	.OZOLIN	Total of positives $= 5$					
May-Dec	Grapes	328	5	1.5	0.12 M		
TOTAL PESTICIDE TOTAL SAMPLES	CS FOUND = 511 $ANALYZED = 1901$	**			-		

- * Pesticide/commodity pairs of interest to EPA.
- ** Does not include the State of Michigan samples for the following: November -- apples, grapefruits, grapes, and oranges.
 December -- apples, bananas, grapes, oranges, and potatoes.
- (a) Samples for which pesticide residues were detected.
- (b) The mean value of the concentrations reported. It does not include samples where these pesticides were not detected.
- (c) PCNB metabolites.
- (d) Thiabendazole determinations only apply to Michigan samples.
- (v) Violation: residues found where tolerance was not established.
- B Parts per billion.
- M Parts per million.

APPENDIX C USE AND TOXICOLOGY OF PESTICIDES DETECTED

ACEPHATE

Introduced by Chevron Chemical Company in 1971 under the trademark Orthene, Acephate is a contact and systemic insecticide effective against aphids, thrips, leafminers and many other insects. It is used on various crops such as lettuce, celery, cotton, cranberries, soybeans, peanuts, etc. Acephate is a weak cholinesterase inhibitor classified as a possible human carcinogen. It has a relatively low acute toxicity and shows no mutagenic or teratogenic effects in laboratory animals.

AZINPHOS-METHYL

Azinphos-methyl was introduced in 1953 by Bayer Leverkusen under the trade names of Gusathion M and Guthion. It is a non-systemic insecticide and acaricide of long persistence used on fruit and field crops, vegetables, tobacco, and ornamentals. Azinphos-methyl is an acutely toxic organophosphate cholinesterase inhibitor. No information is available on the mutagenicity, teratogenicity, or reproductive effects of this compound, and the oncogenic effects are still being evaluated.

<u>CAPTAN</u>

Captan was introduced in 1949 by the Standard Oil Co. and later by Chevron Chemical Co. It is also marketed under the trade names Merpan, Orthocide, SR-406, and Vancide 89. Captan is a fungicide used mainly for foliage protection on a wide range of fruits, vegetables, and field crops (e.g., apple, orange, broccoli, celery, corn, soybean, wheat, etc.). Captan has shown toxic effects in reproduction and mixed mutagenic effects (i.e., positive and negative effects). Captan has been classified as a probable carcinogen because animal studies showed carcinogenic effects at high doses.

CHLORPROPHAM

Introduced in 1951 as a weed killer under the trade names Chloro-IPC or CIPC and manufactured by Pennwalt Holland B.V., Universal Crop Protection Ltd. and Platte Chemical Co., Chlorpropham is a herbicide and plant growth regulator used on terrestrial food and non-food crops and ornamentals. Not enough information is available on the subchronic toxicity, oncogenicity, or mutagenicity of Chlorpropham.

CHLORPYRIFOS

Introduced in 1965 by Dow Chemical, Chlorpyrifos is marketed under the names of Dursban and Lorsban. Chlorpyrifos is effective against a wide variety of insects including aphids, armyworms, grasshoppers, and fire ants, on field, fruit, and vegetable crops. Presently, it is

.

.

not considered to be oncogenic, mutagenic, or teratogenic although additional information is still pending.

<u>DCPA</u>

Introduced in 1958, and produced in the U.S. by Fermenta Plant Protection Company, DCPA is also marketed as Dachtal, Chlorothal, and Chlorothal-dimethyl. DCPA is a herbicide used to control annual grasses and certain annual broadleaf species on terrestrial food and non-food crops. Presently, there are no chronic toxicological concerns for exposures to DCPA itself; however, there are concerns for the chronic toxicological effects of the two manufacturing impurities 2,3,7,8-TCDD and HCB.

DIAZINON

Introduced in 1952 by J.R. Geigy, and marketed under the names Spectracide, AG500, Alfatox, Sarolex, D-Z-N Diazinon 14G, etc., Diazinon is an organophosphate, non-systemic insecticide with some acaricidal action. It is used on field, fruit, nut, and vegetable crops. Diazinon has shown some mutagenic effects, mixed teratogenic effects, and no carcinogenic effects.

DICLORAN

Registered by Upjohn Inc. under the trademark of Botran, Dicloran is a protectant fungicide effective against a wide range of fungal pathogens (e.g., Botrytis, Monilinia, Rhizopus, Sclerotinia, and Sclerotum species). It is used on fruit, vegetable, berry, and ornamental cultivations, and also as a seed treatment for onions and leeks. No human toxicological hazards of concern other than skin photosensitivity have been associated with this compound. Carcinogenicity, mutagenicity, and teratogenicity studies are still ongoing.

<u>DDT-pp'</u>

DDT is a mixture of isomers of which ρ , ρ' -DDT is the predominant component. DDT is a potent non-systemic insecticide widely used in the 1940's until it was discovered that it accumulates in the fatty tissue of warm blooded animals and is highly persistent in the environment. All uses in the U.S. have been cancelled since 1973, with the exception of emergency public health and a very few other uses permitted on a case-by-case basis. DDT is found as a contaminant of Dicofol.

DDE-oo'

DDE is a product of degradation of DDT and is found as a contaminant of Dicofol.

DICOFOL

Introduced in 1955 by the Rohm & Haas Company under the trade name Kelthane, Dicofol is a non-systemic acaricide with little insecticidal activity. It is recommended for the control of

mites on a wide range of crops (e.g., apples, cucumbers, tomatoes, lettuce, etc.). Dicofol is not mutagenic and its carcinogenic effects are still under evaluation. No information is available on its reproductive or teratogenic effects. DDT and DDE are contaminants of Dicofol.

DIMETHOATE

Introduced in 1956 by the American Cyanamid Company under the trade names Cygon and Dimetate, Dimethoate is an organophosphate systemic insecticide used to kill mites, aphids, and other insects on fruit and vegetable crops. It is also used to control house flies around farm buildings. Dimethoate is possibly a human teratogen, a mutagen, and a carcinogen. No reproductive effects have been shown in humans.

ENDOSULFAN I, II, & SULFATE

Introduced in 1956 by Hoechst AG under the trade name Thiodan, endosulfan is a chlorinated hydrocarbon insecticide used as a non-systemic contact poison on aphids, thrips, and other insects. Laboratory animal studies indicate that Endosulfan is acutely toxic at high doses, although the toxicity appears to be influenced by the solvents and emulsifiers used as carriers. No carcinogenic, mutagenic, teratogenic, or reproductive effects were observed.

<u>ETHION</u>

Manufactured in the U.S. by the FMC Corporation, Ethion is an organophosphate nonsystemic insecticide used to control leaf-feeding insects, mites, and scale. Ethion is mainly used on citrus (86-89 percent of total usage), cotton, and a variety of fruit and nut trees. It is highly toxic to mammals, particularly to females. As other organophosphates, Ethion is a cholinesterase inhibitor. No carcinogenic, teratogenic, or mutagenic effects have been associated with Ethion.

HEXACHLOROBENZENE (HCB)

HCB is also known as Perchlorobenzene. It was first marketed in 1945 for seed treatment and was used as a selective fungicide. Use of HCB on food products is prohibited in the U.S. and in most countries because of concerns about its carcinogenic effects and its tendency to bioaccumulate in animal fatty tissue. HCB is found as a contaminant of other registered pesticides (e.g., DCPA, Pentachloronitrobenzene, Chlorothalonil, Picloram, and Pentachlorophenol).

IMAZALIL

Manufactured by Janssen Pharmaceutical, Imazalil is a systemic fungicide used as a wheat and barley treatment for common root rot and associated seedling diseases. It is also used to prevent post-harvest decay of citrus, banana, and pome fruits. Animal studies on the reproductive, mutagenic, carcinogenic, and teratogenic effects of Imazalil have yielded negative results.

IPRODIONE

Iprodione is also known as glycophene and is manufactured by Rhone-Poulenc under the trademark of Rovral. It is used as a preventive action fungicide, inhibiting spore germination and growth of fungal mycellium on fruits and vegetables. Iprodione does not exhibit carcinogenic, teratogenic, or mutagenic properties.

LINDANE

Manufactured by Rhone Poulenc and Drexel Chemical Co., Lindane is used as a foliar spray to control a broad spectrum of insects on tobacco, fruits, and vegetables. Lindane is classified as a possible human carcinogen. It does not exhibit reproductive, mutagenic, or teratogenic properties.

MALATHION

Introduced in 1950 by American Cyanamid Company, Malathion is an organophosphate insecticide used to control aphids, spider mites, scale insects, and other insects attacking fruits, vegetables, ornamentals, and stored products. No information is available on the reproductive, mutagenic, teratogenic, or oncogenic effects of Malathion.

METHAMIDOPHOS

Manufactured by Chevron, Inc. since 1969 under the trademarks of Tamaron and Monitor, Methamidophos is an effective contact and systemic insecticide and acaricide. It is used to control aphids on many types of fruits and vegetables including, cucumbers, melons, and peppers. Methamidophos is highly toxic by the oral and dermal routes but it does not exhibit oncogenic or teratogenic properties. Its reproductive and mutagenic effects are still under evaluation.

METHIDATHION

Manufactured by Ciba-Geigy, this non-systemic insecticide controls a wide range of sucking and leaf-eating insects on fruits and field crops. Methidathion has a high acute toxicity but it does not exhibit carcinogenic, teratogenic, mutagenic, or reproductive effects.

METHOXYCHLOR

Manufactured by Drexel Chemical Co., Kincaid Enterprises, and Prentiss Drug & Chemical Co., Methoxychlor is used to control a wide range of insects encountered in agriculture, households, and industrial sites. The mutagenic, carcinogenic, reproductive, and mutagenic effects of Methoxychlor are still under evaluation.

METHYL PARATHION

Introduced in 1949 by Bayer Leverkusen and manufactured in the U.S. by Monsanto Chemical Company, Methyl Parathion is an organophosphate insecticide used to control a wide variety of biting and sucking insects on fruit, vegetable, nut, and field crops, tobacco and ornamentals, forestry, and aquatic food crops. Methyl Parathion is a cholinesterase inhibitor highly toxic to mammals. Oncogenic and teratogenic effects are still being evaluated. No mutagenic or reproductive effects have been linked to use of Methyl Parathion.

MYCLOBUTANIL

Also known as Systhane, Myclobutanil is manufactured by Rohm & Haas Company. Myclobutanil is a systemic fungicide used on apples, grapes, peaches, nectarines and cherries for the control of many fungi (e.g., Ascomycetes, Deuteromycetes, and Basidiomycetes). Myclobutanil has a moderate to low acute toxicity. Animal studies showed some reproductive effects at high doses. Oncogenic, mutagenic, and teratogenic studies showed negative results.

METHYL PCP SULFIDE, PENTACHLOROANILINE, PENTACHLOROBENZENE

Metabolites of Quintozene (PCNB).

PERMETHRIN

Cis/trans Permethrin is a synthetic pyrethroid and the ratio of the isomers is dependent on the manufacturing process. Permethrin is a contact pesticide with greater resistance to photo degradation than the natural pyrethrins. Its activity in sunlight can last for up to 12 weeks and is effective against many of the common plant insects, such as caterpillars and aphids. Permethrin also degrades rapidly in soil and water. Permethrin does not exhibit any carcinogenic properties.

PHOSMET

Manufactured by the Stauffer Chemical Company, Phosmet is an organophosphate insecticide used on vegetable, fruit, and field crops for the control of a wide variety of insects, which include alfalfa weevil, boll weevil, oriental fruit moth, and leafrollers. Phosmet has a moderate to low acute toxicity, is considered a "tentative" carcinogen although further studies are pending, and its mutagenic effects are still under evaluation. Phosmet does not exhibit teratogenic or mutagenic effects

OUINTOZENE (PCNB)

Quintozene or Pentachloronitrobenzene (PCNB) was introduced in the late 1930's by Hoechst AG, and is currently manufactured by AMVAC Chemical Corp., Uniroyal Chemical Co.,

and others. Quintozene is used on vegetable crops and ornamentals as a soil fungicide and seed dressing agent. Carcinogenic and teratogenic effects were observed in studies conducted on PCNB containing 11 percent of HCB as manufacturing impurity, therefore, new studies are being required. No mutagenic or reproductive effects were observed.

THIABENDAZOLE

Manufactured by Merck & Co., Inc., Thiabendazole is also sold under the trade names TBZ, Mertec, Tecto, and Thibenzole. Thiabendazole is a systemic fungicide used on fruit and vegetable crops for the control of diseases such as mold, rot, blight, and stain. No carcinogenic or mutagenic effects have been attributed to Thiabendazole, however, some animal studies have shown reproductive and teratogenic effects at high doses.

VINCLOZOLIN

Introduced in 1975 by BASF AG, Vinclozolin is a selective fungicide effective against Botrytis cinerea, Monilia spp, and Sclerotinia sclerotiorum and developed for use in vines, fruits, hops, and ornamentals. Vinclozolin causes moderate skin irritation. No other toxic effects have been attributed to this chemical.

.

. .

PESTICIDE DATA PROGRAM Calendar Year 1991 Report

ADDENDUM

Agricultural Marketing Service U.S. Department of Agriculture

United States Department of Agriculture Agricultural Marketing Service P.O. Box 96456 Washington, DC 20090-6456

April 1992

To the Reader:

The Agricultural Marketing Service of the United States Department of Agriculture in May 1991, implemented the Pesticide Data Program to collect objective, comprehensive data on pesticide residues for fresh fruit and vegetables. This program was submitted to Congress as part of the President's 1991 budget to address the increased interest in food safety by producers and consumers.

This program was designed to provide government agencies with an improved data base to respond more effectively to food safety issues. The primary recipient of the program's data will be the Environmental Protection Agency, which will use this information to support its risk assessment process.

The enclosed report provides residue data for the last 8 months of calendar year 1991. This program has been funded by Congress and is operated through cooperatives agreements with six participating States. These States, California, Florida, Michigan, New York, Texas, and Washington, have the responsibility for sample collection and residue analysis.

The program was expanded in 1992 to include additional commodities and pesticide classes. This information will be reflected in future reports.

This is an addendum report to update sample results which were not reported in the March 1991 report. We welcome comments regarding this report. Comments should be addressed to:

Dr. Craig A. Reed, Director Science Division Agricultural Marketing Service U.S. Department of Agriculture P.O. Box 96456 (Room 3064S) Washington, DC 20090-6456

TABLE OF CONTENTS Addendum Report

EXECUTIV	E SUMMARY		iv
SECTION 4	:		
4.0	SAMPLE RESULTS		22
	Table 4.1	Distribution of Residues Detected	
		by Commodity	24
	Table 4.2	Residue Concentration Levels and	
		State Distribution	27
APPENDIC	ES:		
	Appendix B	Distribution of Residues Detected by Pesticide	39

iii

.

.

100 DOL 100 DO

0.0

EXECUTIVE SUMMARY

The Agricultural Marketing Service (AMS) of the United States Department of Agriculture (USDA) began the residue testing program in May 1991 as part of USDA's Pesticide Data Program (PDP). This program collects actual concentration levels of pesticide residues in fresh fruit and vegetables close to the consumer level while retaining product origin. The PDP program is a result of President Bush's 1989 Food Safety Proposal, and has been funded by Congress for 2 years. AMS developed PDP's policy and operations procedures and residue testing priorities in close cooperation with the Environmental Protection Agency (EPA) and the Food and Drug Administration (FDA). These data are to be used by EPA for pesticide risk assessment and serve as an initial data base for national residue testing so that government agencies can respond more effectively to food safety issues.

The residue monitoring program is being implemented in stages based on the data needs expressed by EPA. The data presented in this report reflect the first stages of that plan. The sample collections and analyses were conducted by six participating States: California, Florida, Michigan, New York, Texas, and Washington. These States represent diverse geographic regions, approximately 40 percent of the Nation's population, and a large segment of the fresh fruits and vegetables grown in the U.S.

Testing began in mid-May 1991 with three commodities -- grapes, lettuce, and potatoes. By September 1991, apples, bananas, grapefruit, and oranges were added. Analysis began with 8 chlorinated pesticides of interest to EPA and expanded to include organophosphate pesticide analysis for a total of 11 pesticides of interest to EPA by November 1991. This includes 24 of the 88 pesticide/commodity pairs of EPA interest -- excluding methyl bromide. By the end of the calendar year, 34 different pesticide residues were detected.

A total of 1,963 samples, apportioned by State population, were collected in the 6 States. These samples were collected at random from terminal produce markets and chain store distribution centers. States provided quarterly sampling plans based on AMS's quarterly program plan for commodities and pesticides to be tested. Every State identified a random date each month for collecting all samples for a commodity from different sites. This procedure enabled the laboratories to provide the necessary quality control criteria to ensure the integrity and reliability of the data. Sample origin was from the 6 participating States, 27 additional States, and 13 countries.

At the laboratory, samples were examined for acceptability for analysis. Only the edible portions of the products were prepared, employing procedures similar to those consumers would use, and analyzed. Each laboratory used its current analytical procedures, but was required to meet PDP quality control (QC) standards necessary to demonstrate equivalency of data for the 11 pesticides of interest to EPA, and for reporting other detected pesticides.

The QC requirements included a list of pesticide detection levels, laboratory capability studies, and rigorous QC controls with each set of samples tested. In addition, all laboratories participated in a proficiency testing program to demonstrate performance and determine laboratory capability on unknown samples.

A total of 1,963 samples were analyzed. There were 450 samples (23 percent) with detectable levels of pesticide residues, i.e., "positive samples." The percentage of positive samples varied by commodity as follows: apples (36 percent), grapes (35 percent), potatoes (27 percent), oranges (23 percent), lettuce (17 percent), grapefruit (17 percent), and none in bananas. There were four violations from four different States for pesticide residues having no commodity tolerances. Ten of the 11 pesticides of interest to EPA were detected (the exception being hexachlorobenzene) and covered 13 pesticide/commodity pairs. Two pesticide/commodity pairs, dicloran and iprodione in grapes, were detected in samples collected in all six States.

There were 547 pesticide residues detected in the 1,963 samples analyzed. These pesticide residues represented 34 different chlorinated and/or organophosphate pesticides of which 207 (38 percent) were of interest to EPA. The number of pesticide/commodity pairs showing the greatest percentage of findings were: iprodione/grapes (15.5 percent), dicloran/grapes (14.6 percent), chlorpyrifos/apples (16.1 percent), permethrins/lettuce (9.4 percent). Most of the residues were detected at levels substantially below tolerance levels. A tolerance is the amount of pesticide residue permitted on agricultural products in the USA under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA).

Other pesticide/commodity pairs showing large detection percentages were: chlorpropham/ potatoes (17.5 percent), azinphos methyl/apples (13.5 percent), captan/apples (8.1 percent), and thiabendazole in citrus (65.7 percent)--applicable only to Michigan samples. Imazalil, a post harvest fungicide, was detected in 11.5 percent of the citrus products tested.

v

The significance of the residue findings will be determined by EPA's risk assessment process. See Appendix C for uses and toxicology for each pesticide.

4.0 SAMPLE RESULTS

In 1991, a total of 1,963 samples were collected. All samples were analyzed according to the pesticide testing plans for each month. From May through December 1991, these pesticides were: chlorpyrifos, dicloran, hexachlorobenzene (HCB), iprodione, lindane, methoxychlor, permethrins, and quintozene (PCNB). In October 1991, dicofol was added as part of the testing profile for all 6 States, and in November 1991, acephate and methamidophos were added for a total of 11 pesticides. In addition, 24 other pesticides were detected, however, capability for detection and detection limits varied by State, as shown in Table 3.1. Ten of these pesticides were added as part of the testing profile in October 1991, for all State laboratories based on the following selected commodities:

Grapes:	Captan, endosulfan I, II and sulfate, myclobutanil, and vinclozolin
Grapefruit:	Imazalil
Oranges:	Imazalil
Lettuce:	DCPA
Potatoes:	Chlorpropham (CIPC), and p,p' DDE

Thirteen additional pesticides listed in Table 4.1 were detected in at least one of the seven commodities tested after October 1, 1991, and listed by State in Table 4.2. Michigan had the capability of detecting thiabendazole using a multiresidue screen by employing mass spectrometry detection. In Table 4.2, the only pesticide/commodity pairs from EPA list detected in all six States were dicloran and iprodione in grapes. Chlorpropham in potatoes was reported in all States except Florida.

There were a total of 450 samples, 23 percent, having pesticide residues. This ranges from 77 out of 211 samples, 36 percent, with 15 different residues for apples, to bananas, where no residues were detected. The descending order of the percentage of samples in which residues were detected in the other 5 commodities are: grapes (35 percent), potatoes (27 percent), oranges (23 percent), lettuce (17 percent), and grapefruit (17 percent). Ten of the 11 pesticides of initial interest to EPA were detected in at least one commodity, except for HCB. Of the 24 pesticide/commodity pairs in Table 1.1, 13 pairs had at least one sample which contained a detectable level of pesticide residue, i.e., a positive sample.

There were four violations, listed in Table 4.1. They were iprodione and acephate in apples, chlorpyrifos in lettuce, and pentachlorobenzene in potatoes. In all cases, there were no established tolerances for that particular commodity and pesticide shown in Table 4.2, and each of them was from a different State.

Appendix B is a compilation of total pesticide residues detected. In all there were 547 residue findings representing 34 different pesticides in the 1,963 samples analyzed. For the 11 pesticides on the EPA list, there were 207 residue findings. Appendix B lists all of the pesticides detected by total number of samples, number of positive findings, percent of positive samples, and mean value of the residue detected. For the 11 pesticides on the initial test list, all results were listed, even if residues were not detected. For the other pesticides reported, only those commodities where residues were detected are listed.

The pesticide/commodity pairs from the EPA list showing the largest number/percentage of pesticide detections were: iprodione/grapes (53/15.5 percent), dicloran/grapes (50/14.6 percent), chlorpyrifos/apples (34/16.1 percent), and permethrins/lettuce (33/9.4 percent). The mean residue concentration detected were respectively; 0.28 ppm, 0.21 ppm, 38 ppb, 0.58 ppm. These 4 pairs accounted for 170 or 82 percent of the 207 residue findings for the 11 pesticides of initial EPA interest.

For the other pesticides reported by commodity, the most prevalent pesticides detected in apples were azinphos methyl in 13.5 percent of the samples with a mean concentration of 0.10 ppm, applicable to apples collected after October 31, 1991, and captan in 8.1 percent of the samples with a mean concentration of 86 ppb. In potatoes, chlorpropham (CIPC) was detected in 17.5 percent of the samples tested from May 1991, with a mean concentration of 1.11 ppm. Michigan detected thiabendazole in approximately 65.7 percent of the citrus fruit tested.

Appendix C is a use and toxicology profile of the pesticides. These pesticides were either in the testing plans or detected in commodities tested in 1991. They covered a wide spectrum of use compounds from insecticides, fungicides, post-harvest fungicides, herbicides, acaricides, manufacturing impurities, and metabolites of compounds included in the testing profile.

TABLE 4.1DISTRIBUTION OF RÉSIDUES DETECTEDBY COMMODITY

PESTICIDES DETECTED	NUMBER OF SAMPLES ANALYZED	NUMBER OF POSITIVE SAMPLES	PERCENT OF POSITIVE SAMPLES				
APPLES							
Acephate (v) Azinphosmethyl Captan Chlorpyrifos* Diazinon Dicofol* Dimethoate Ethion Endosulfan I & II Endosulfan Sulfate Iprodione (v) Methoxychlor* Methyl Parathion Phosmet Total = 15	211	77	36				
BANANAS							
None Total = 0	203 .	0	0				
GRAPEFRUIT							
Chlorpyrifos* Ethion Imazalil Thiabendazole	257	. 44	17				
Total = 4							

PESTICIDES DETECTED	NUMBER OF SAMPLES	NUMBER OF POSITIVE	PERCENT OF POSITIVE
	ANALYZED	SAMPLES	SAMPLES
	GRAPES		
Captan Dicloran* Dimethoate Dicofol Endosulfan I & II Endosulfan Sulfate Iprodione* Lindane Myclobutanil Vinclozolin	328	113	34
Total = 11			
	LETTUCH	E	
Acephate* Chlorpyrifos (v) DCPA Diazinon Dicloran* DDE Endosulfan I & II Endosulfan Sulfate Methamidophos* Permethrins*	351	59	17
Total = 11			
	ORANGE	5	
Chlorpyrifos* Dicofol Ethion Imazalil Malathion Methidathion Thiabendazole	242	46	19
Total = 7			

TABLE 4.1 (continued)

Ž5

INDED 4.1 (continued)										
PESTICIDES DETECTED	NUMBER OF SAMPLES ANALYZED	NUMBER OF POSITIVE SAMPLES	PERCENT OF POSITIVE SAMPLES							
	POTATOE	S								
Captan Chlorpropham DDD DDE DDT Diazinon Dicloran* Ethion Endosulfan I & II Endosulfan Sulfate Quintozene PCP Methylsulfide Pentachloroaniline Pentachlorobenzene(v)	343	91	27							
Total = 15	Total = 15									
PESTICIDES DETECTED TOTAL	SAMPLES ANALYZED TOTAL (a)	POSITIVE SAMPLES TOTAL (b)	PERCENT OF POSITIVE SAMPLES							
34	1,963	450	23							

TABLE 4.1 (continued)

*

Pesticide/commodity pairs of interest to EPA. More than one residue may have been detected in some of the positive samples. Violation: residues found where no tolerance was established.

(a) (v)

:

TABLE 4.2RESIDUE CONCENTRATION LEVELSAND STATE DISTRIBUTION

PESTICIDE	COMMODITY	STATES	MIN.	MAX.	TOLERANCE (ppm)**
Acephate*	Apples(v)	TX	17 B	17 B	None
	Lettuce*	CA, NY	6 B	30 B	10
Azinphos-Methyl	Apples	CA, NY	6 B	0.31 M	2.0
Captan	Apples	FL, NY, TX	10 B	0.17 M	25
	Grapes	NY, TX	16 B	0.57 M	50
	· Potatoes	МІ	0.17 M	0.23 M	25 ¹
Chlorpropham	Potatoes	CA, FL, MI NY, TX	10 B	10 M	50
Chlorpyrifos*	Apples*	CA, FL, MI NY, TX	3 B	0.21 M	1.5
	Grapefruit*	TX	19 B	30 B	1.0
	Lettuce (v)	CA	50 B	50 B	None ²
	Oranges*	TX	0.12 M	0.36 M	1.0
DCPA	Lettuce	CA, WA	8 B	30 B	2
pp'-DDE	Potatoes	CA, FL, NY, TX	3 B	27 B	13
	Lettuce	CA, NY	9 B	30 B	0.5 ³
pp'-DDD	Potatoes	FL	3 B	3 B	13
pp'-DDT	Potatoes	FL, NY	6 B	29 B	13
Diazinon	Apples	CA	35 B	30 B	0.5
	Lettuce	CA	57 B	57 B	0.7
	Potatoes	TX	7 B	7 B	0.1
Dicloran*	Potatoes*	NY, WA	10 B	0.11 M	0.25
:	Grapes*	CA,FL,MI, NY,TX,WA	2B	1.3 M	10
	Lettuce*	CA	6 B	0.12 M	10

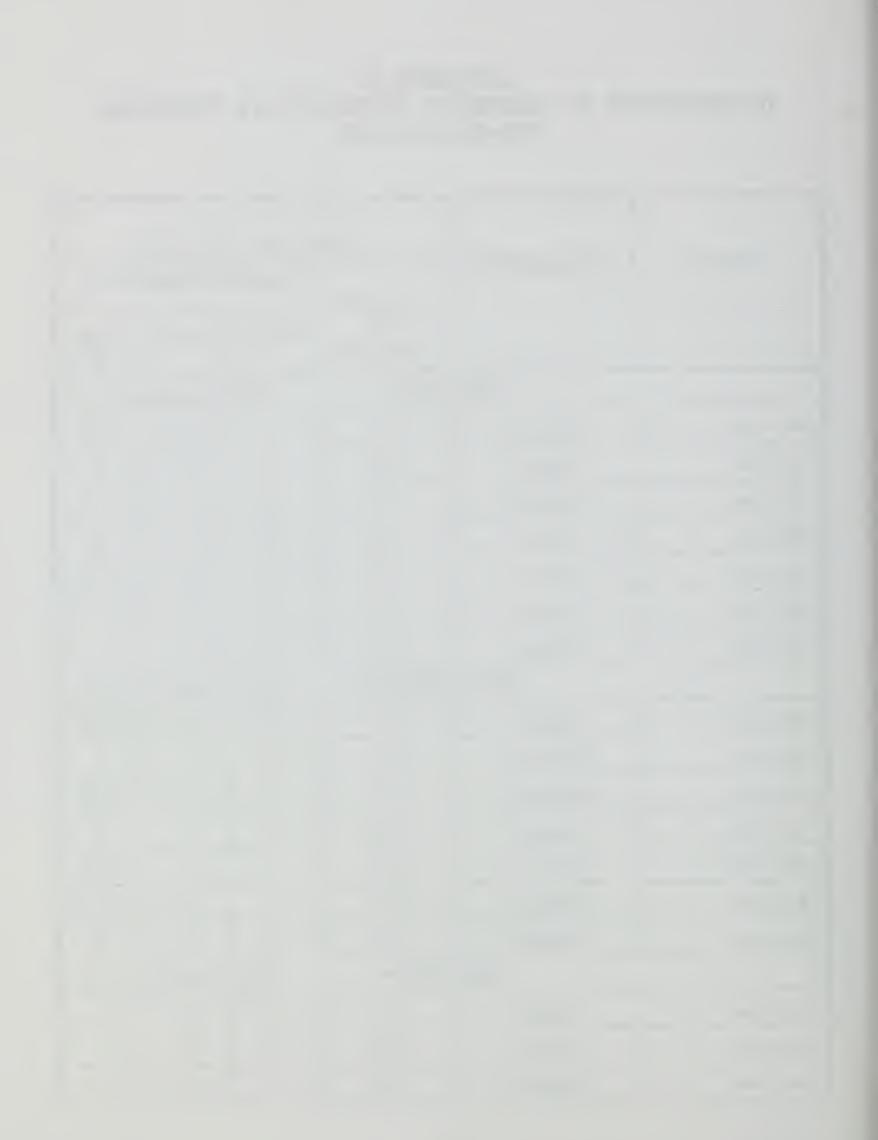
PESTICIDE	COMMODITY	STATES	MIN.	MAX.	TOLERANCE (ppm)**
Dicofol*	Apples	CA, NY	59 B	0.60 M	5
	Grapes	CA, FL, NY, TX	4 B	0.46 M	5
	Oranges*	FL	20 B	75 B	10
Dimethoate	Apples	CA, NY	22 B	0.35 M	2
	Grapes	FL	0.25 M	0.25 M	1
Endosulfans	Apples	CA, TX	13 B	56 B	2.0
	Grapes	CA, NY, TX	8 B	0.13 M	2.0
-	Lettuce	CA, NY, TX, WA	11 B	0.21 M	2.0
	Potatoes	NY, TX	2 B	16 B	0.24
Endosulfan Sulfate	Apples	CA, NY, TX, WA	10 B	19 B	2.0
	Grapes	CA, NY, TX	10 B	44 B	2.0
	Lettuce	NY, TX, WA	9 B	80 B	2.0
	Potatoes	NY, TX	5 B	98 B	0.24
Ethion	Apples	CA	0.36 M	0.36 M	2.0
	Grapefruit	FL	2 B	2 B	2.0
	Oranges	FL, NY	2 B	24 B	2.0
Imazalil	Grapefruit	MI, NY, TX	11 B	0.30 M	2.0
	Oranges	MI,NY,TX	5 B	0.44 M	10
Iprodione*	Apples (v)	WA	0.18 M	0.18 M	None
	Grapes*	CA,FL,MI, NY,TX,WA	10 B	1.1 M	60.0
Lindane*	Grapes	NY	34 B [.]	34 B	1
Malathion	Oranges	NY	6 B	0.17 M	8
Methidathion	Oranges	FL, NY	4 B	19 B	2.0

 TABLE 4.2 (continued)

the second s

PESTICIDE	COMMODITY	STATES	MIN.	MAX.	TOLERANCE (ppm)**
Methamidophos*	Lettuce*	TX	43 B	43 B	1.0
Methyl Parathion	Apples	CA	43 B	0.15 M	1
Methoxychlor*	Apples*	FL, WA	60 B	0.24 M	14
Myclobutanil	Grapes	CA, MI, NY, TX	19 B	0.17 M	1.0
PCP- Methylsulfide (a)	Potatoes	FL	10 B	10 B	0.15
Pentachloroaniline (a)	Potatoes	FL	50 B	50 B	0.15
Pentachlorobenze ne	Potatoes (v)	FL	30 B	30 B	None
Permethrins* (both)	Lettuce*	CA, NY, TX, WA	0.11 M	3.3 M	20.0
Phosmet	Apples	CA, NY	_11 B	0.44 M	10
	Ġrapes	NY	39 B	39 B	10
Quintozene* (PCNB)	Potatoes	CA, FL, WA	3 B	40 B	0.11
Thiabendazole	Grapefruit	МІ	39 B	0.27 M	10
	Oranges	МІ	92 B	0.43 M	10
Vinclozolin	Grapes	FL, NY	33 B	0.27 M	6.0

- * Pesticide/ commodity pairs of interest to EPA.
- ** Tolerances' significant figures as expressed in the 40 CFR, Part 180.
- (a) Metabolites of Quintozene (PCNB)
- (v) Violation: residues found where tolerances were not established.
- 1 Interim tolerance.


2 Tolerance not established although there is a pending tolerance listed at 40 CFR Part 180.342.

- 3 Tolerances for DDT, DDE, DDD as individual or in combination were revoked on 12/24/86. Numbers cited are administrative guidelines/action levels.
- 4 Negligible residue tolerance.
- 5 Administrative guidelines.
- M Parts per million.
- B Parts per billion.

1.000

APPENDIX B DISTRIBUTION OF RESIDUES DETECTED BY PESTICIDE May-December 1991

<u> </u>	T						
MONTHS	COMMODITIES	SUMMARY OF RESULTS					
MONTHS	COMMODITIES	NUMBER	POSITIV	VE SAMP	LES (a)		
		OF SAMPLES	Number	Percent	Mean (b)		
	Total	of positive	s = 3				
Nov-Dec	Apples (v)	104	1	1.0	17 B		
Nov-Dec	Bananas	103	0	0	0		
Nov-Dec	Grapefruit	104	0	0	0		
Nov-Dec	Grapes	104	0	0	0		
Nov-Dec	Lettuce*	104	2	1.9	21 B		
Nov-Dec	Oranges	104	0	0	0		
Nov-Dec	Potatoes	104	0	0	0		
	CHLOR	PYRIFOS*	Total of positives $= 39$				
Sept-Dec	Apples*	211	34	16.1	38 B		
Sept-Dec	Bananas*	203	0	0	0		
Aug-Dec	Grapefruit*	257	2	0.8	25 B		
May-Dec	Grapes*	342	0	0	0		
May-Dec	Lettuce (v)	351	1	0.3	50 B		
[·] Aug-Dec	Oranges*	256	2	0.8	0.24 M		
May-Dec	Potatoes	343	0	0	0		
DICLORAN*			Total	of positive	s = 54		
Sept-Dec	Apples 211		0	0	0		
Sept-Dec	Bananas	203	0	0	0		
Aug-Dec	Grapefruit	257	0	0	0		

		SUMMARY OF RESULTS					
MONTHS	COMMODITIES	NUMBER	POSITIV	VE SAMP	LES (a)		
	••	OF SAMPLES	Number	Percent	Mean (b)		
May-Dec	Grapes*	342	50	14.6	0.26 M		
May-Dec	Lettuce*	351	2	0.6	63 B		
Aug-Dec	Oranges	256	0	0	0		
May-Dec	Potatoes*	343	2	0.6	60 B		
	DIC	OFOL*	Total	of positive	s = 16		
Aug-Dec	Apples*	211	3	1.4	0.29 M		
Aug-Dec	Bananas	203	0	0	0		
· Aug-Dec · ·	Grapefruit*	257	0	0	0		
Aug-Dec	Grapes	259	11	4.2	0.21 M		
Aug-Dec	Lettuce	258	0	0	0		
Aug-Dec	Oranges*	256	2	0.8	48 B		
Aug-Dec	Potatoes	256	0	0	0		
	HCB* (Hexa	chlorobenzene)	Total	of positive	s = 0		
Sept-Dec	Apples	211	0	0	0		
Sept-Dec -	- Bananas*	203	0	0	0		
Aug-Dec	Grapefruit	257	0	0	0		
May-Dec	Grapes	342	0	0	0		
May-Dec	· - Lettuce	351	0	0	0		
Aug-Dec	Oranges	256	0	0	0		
May-Dec	Potatoes	343	0	0	0		

,

International Property in the

		SUM	MARY OF	RESULTS	5	
MONTHS	COMMODITIES	NUMBER	POSITI	VE SAMP	LES (a)	
		OF SAMPLES	Number	Percent	Mean (b)	
	IPRO	DIONE*	Total	of positive	s = 54	
Sept-Dec	Apples(v)	211	1	0.5	0.18 M	
Sept-Dec	Bananas	203	0	0	0	
Aug-Dec	Grapefruit	257	0	0	0	
May-Dec	Grapes*	342	53	15.5	0.28 M	
May-Dec	Lettuce*	351	0	0	0	
Aug-Dec	Oranges	256	0	0	0	
May-Dec	Potatoes	343	0	0	0	
	LIN.	DANE*	Total of positives $= 1$			
Sept-Dec	Apples	211	. 0	0	0	
Sept-Dec	Bananas	203	0	0	0	
Aug-Dec	Grapefruit	257	0	0	0	
May-Dec	Grapes	342	1	0.3	34 B	
May-Dec	Lettuce*	351	0	0	0	
Aug-Dec	Oranges	256	0	0	0	
May-Dec	Potatoes	343	0	0	0	
	METHAN	/IDOPHOS*	Total	of positive	s = 1	
Nov-Dec	Apples	104	0	0	0	
Nov-Dec	Bananas	103	0	0	0	
Nov-Dec	Grapefruit	104	0	0	0	
Nov-Dec	Grapes	104	0	0	0	
Nov-Dec	Lettuce*	104	1	1.0	43 B	

· · · ·		SUM	MARY OF	RESULTS	
MONTHS	COMMODITIES	NUMBER	POSITIV	VE SAMP	LES (a)
	· · · · ·	OF SAMPLES	Number	Percent	Mean (b)
· · · ·	METHAMIDO	PHOS* (continu	ıed)		
. Nov-Dec	· · · Oranges	104	0	0	0
Nov-Dec	Potatoes*	104	0	0	0
	METHO	XYCHLOR*	Total	of positive	s = 2
Sept-Dec	Apples*	211	2	0.9	0.15 M
Sept-Dec	Bananas	203	0	0	0
Aug-Dec	Grapefruit	257	0	0	0
May-Dec	Grapes*	342	0	0	0
May-Dec	Lettuce	351	0	0	0
Aug-Dec	Oranges	256	0	0	0
May-Dec	·····Potatoes	343	0	0	0
	PERMI	THRINS* Total of positives =			s = 33
Sept-Dec	Apples*	211	• 0	0	0
Sept-Dec	Bananas	203	0	0	0
Aug-Dec	Grapefruit	257	0	0	0
Sept-Dec	Grapes	342	0	0	0
May-Dec	Lettuce*	351	33	9.4	0.58 M
Aug-Dec	Oranges	256	0	0	0
May-Dec	Potatoes*	343	0	0	0
	ENE* (PCNB)	Total	of positive	s = 4	
Sept-Dec	Apples	211	0	0	0
Sept-Dec	Bananas*	203	0	0	0
Aug-Dec	Grapefruit	257	0	0	0

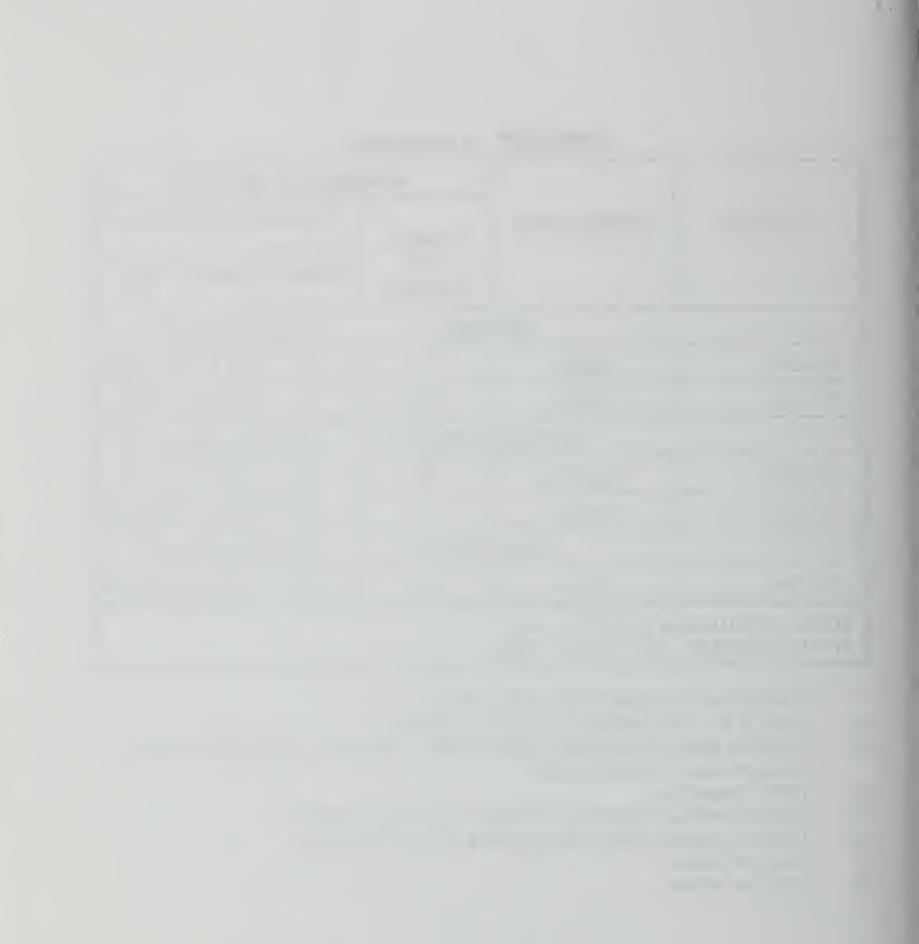
the second second

		SUMMARY OF RESULTS				
MONTHS	COMMODITIES	NUMBER	POSITIVE SAMPLES (a)			
		OF SAMPLES	Number	Percent	Mean (b)	
	QUINTOZENE*	(PCNB) (contin	nued)			
May-Dec	Grapes	342	0	0	0	
May-Dec	Lettuce	- 351	: 0	0	0	
Aug-Dec	Oranges	256	0	0	0	
May-Dec	Potatoes	343	4	1.2	7 B	
	OTHER I	PESTICIDES				
	AZINPHO	OS METHYL	Total of positives $= 14$			
Nov-Dec -	Apples	104	14	13.5	0.10 M	
	·· CA	PTAN	Total of positives $= 23$			
Sept-Dec	Apples	211	-17	8.1	86 B	
May-Dec	Grapes	342	1	1.2	0.21 M	
May-Dec	Potatoes	343	2	0.6	0.20 M	
	CHLOR	PROPHAM	Total	of positive	s = 60	
May-Dec	Potatoes	343	60	17.5	1.11 M	
	D	CPA	Total	of positive	es = 9	
Aug-Dec	Lettuce	258	9	3.5	21 B	
	pp	Total	of positive	s = 1		
May-Dec	Potatoes	343	1	0.3	3 B	
	рр	pp'-DDE			s = 14	
Aug-Dec	Lettuce	258	3	1.2	20 B	
May-Dec	Potatoes	343	11	3.2	13 B	

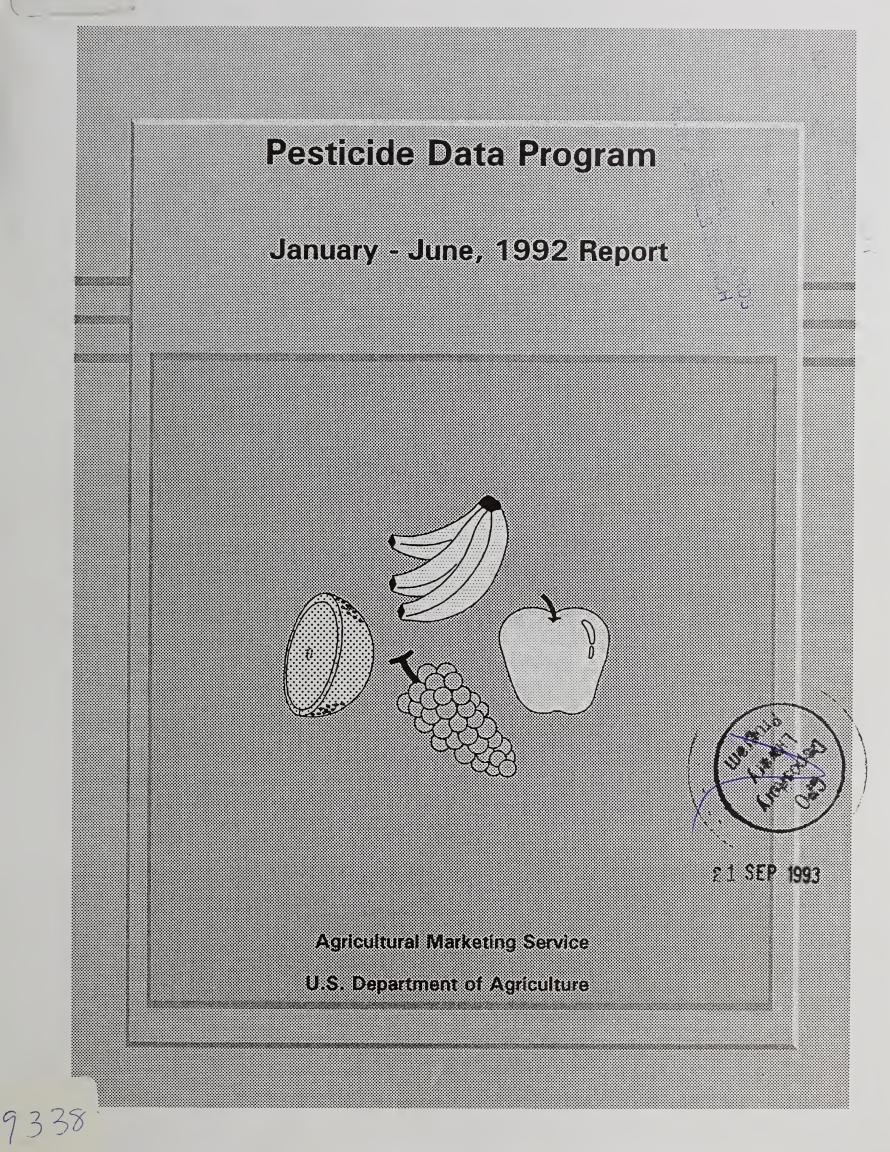
		SUM	MARY OF RESULTS			
MONTHS	COMMODITIES	NUMBER	POSITIV	POSITIVE SAMPLES (a)		
		OF SAMPLES	Number	Percent	Mean (b)	
pp'-DDT			Total of positives $= 2$			
Jun-Dec	Potatoes	331	2	0.6	19 B	
DIAZINON			Total of positives $= 3$			
Sept-Dec	Apples	211	1	0.5	35 B	
Nov-Dec	Lettuce	104	1	1.0	57 B	
Jun-Dec	Potatoes	331	1	0.3	7 B	
	DIME	THOATE	Total	of positive	s = 8	
Nov-Dec	Apples	104	7	6.7	0.12 M	
Nov-Dec	Grapes	104	1	1.0	0.25 M	
ENDOSULFAN I A			Total	of positive	es = 23	
Nov-Dec	Apples	104	7	6.7	29 B	
Aug-Dec	Grapes	259	· 8	3.1	36 B	
Jun-Dec	Potatoes	331	3	0.9	13 B	
Oct-Dec	Lettuce	156	5	3.2	60 B	
ENDOSULFAN SULFATE Total of positives =					s = 29	
Nov-Dec	Apples	104	3	3.8	12 B	
Aug-Dec	Grapes	259	4	1.5	29 B	
Oct-Dec	Lettuce	156	5	3.2	64 B	
Jun-Dec	Potatoes	331	16	4.8	22 B	

the second second second

		SUM	MARY OF	RESULTS			
MONTHS	COMMODITIES	NUMBER	POSITIV	VE SAMP	LES (a)		
		OF SAMPLES	Number	Percent	Mean (b)		
ETHION			Total	of positive	s = 6		
Nov-Dec	Apples	104	1	1.0	.0.36 M		
Sept-Dec	Grapefruit	206	1	0.5	12 B		
Sept-Dec	Oranges	207	4	1.9	10 B		
IMAZALIL Total of positives = 59							
Ang-Dec	Grapefruit	257	22	8.6	0.15 M		
Aug-Dec	Oranges	256	37	14.4	0.14 M		
MALATHION To				al of positives $= 3$			
Nov-Dec	Oranges	104	3	3.1	60 B		
METHIDATHION Total of positives			s = 2				
Aug-Dec	Oranges	256	-2	0.8	12 B		
METHYL PARATHION Total of positives = 2					es = 2		
Oct-Dec	Apples	156	2	1.2	97 B		
$\mathbf{MYCLOBUTANIL} \text{Total of positives} = 22$							
Jul-Dec	Grapes	309	22	7.1	91 B		
PCP- METHYLSULFIDE (c) Total of positives $= 1$							
Sept-Dec	Potatoes	207	1	0.5	10 B		
PENTACHLOROANILINE (c) Total of positives = 1							
Sept-Dec	Potatoes	207	1	0.5	50 B		
	PENTACHL	OROBENZENI	E Total	of positive	s = 1		
Sept-Dec	Potatoes (v)	207	1	0.5	30 B		


MONTHS	COMMODITIES	SUMMARY OF RESULTS			
		NUMBER OF SAMPLES	POSITIVE SAMPLES (a)		
			Number	Percent	Mean (b)
PHOSMET Total of positives = 6					s = 6
Sept-Dec	Apples	211	5	2.4	0.18 M
Nov-Dec	Grapes	104	1	1.0	39 B
	THIABEN	DAZOLE (d)	Total of positives $= 46$		
Aug-Dec	Grapefruit	35	21	60.0	76 B
Aug-Dec	Oranges	35	25	71.4	0.22 M
VINCLOZOLINTotal of positives = 5					
May-Dec	Grapes	342	5	1.5	0.12 M
TOTAL PESTICIDES FOUND = 547 TOTAL SAMPLES ANALYZED = 1963					


* Pesticide/commodity pairs of interest to EPA.


(a) Samples for which pesticide residues were detected.

(b) The mean value of the concentrations reported. It does not include samples where these pesticides were not detected.

- (c) PCNB metabolites.
- (d) Thiabendazole determinations only apply to Michigan samples.
- (v) Violation: residues found where tolerance was not established.
- B Parts per billion.
- M Parts per million.

United States Department of Agriculture Agricultural Marketing Service P.O. Box 96456 Washington, DC 20090-6456

July 1993

To the Reader:

In May 1991, the Agricultural Marketing Service of the United States Department of Agriculture implemented the Pesticide Data Program (PDP) to collect objective, comprehensive data on pesticide residues for fresh fruits and vegetables. This program was submitted to Congress as part of the President's 1991 budget to address the increased interest in food safety by producers and consumers.

This program was designed to provide government agencies with an improved data base to respond more effectively to food safety issues. The primary recipient of the program's data will be the Environmental Protection Agency, which will use this information to support its risk assessment process.

The enclosed report provides residue data for the first six months of calendar year 1992. PDP has been funded by Congress and is operated through Cooperative Agreements with participating States, which have the responsibility for sample collection and analysis. Through the end of 1992, there were six participating States as follows: California, Florida, Michigan, New York, Texas, and Washington.

The program was expanded during the last six months of 1992 to include additional commodities and pesticide classes. This information will be reflected in the full PDP Calendar Year 1992 Report, which will be published in the fall of 1993. Program operations were expanded once again in January of 1993 to include three new participating States. The addition of these States--Colorado, North Carolina, and Ohio--increased the segment of the Nation's population represented by PDP sampling to approximately 50 percent, and also provided for a greater degree of regional diversity.

We welcome comments regarding this report. Comments should be addressed to:

Dr. Craig A. Reed, Director Science Division Agricultural Marketing Service U.S. Department of Agriculture P.O. Box 96456 (Rm. 3507S) Washington, DC 20090-6456

CONTENTS

List of Figures, Tables, and Appendices

Executive Summary

1.0 INTRODUCTION

- 1.1 1992 Program Operations, January-June
- 1.2 1992 Program Operations, July-December Preview
- 1.3 1993 Preview

2.0 SAMPLING OVERVIEW

- 2.1 Sampling Procedures
- 2.2 Statistics on Samples Collected

3.0 LABORATORY OVERVIEW

- 3.1 Quality Assurance Program
- 3.2 Sample Preparation
- 3.3 Sample Analysis

4.0 SAMPLE RESULTS

- 4.1 Multiple Residues Detected
- 4.2 Non-Detected Residues
- 4.3 Tolerance Violations

3,

LIST OF FIGURES, TABLES, AND APPENDICES

FIGURES/TABLES

F	Figure A.	Overview of PDP Management and Operations				
F	Figure 1.0	Pesticides in PDP				
F	Figure 1.1	Areas of Distribution of Participating States				
F	Figure 2.0	Commodity Distribution Percentages				
F	Figure 2.1	Origin of Domestic Samples				
נ	Table 1.	Distribution of Pesticide Residue Concentrations by Commodity				
נ	Table 2.	Quantifiable Concentration Detected vs. Established Tolerances				
APPENDICES						
A	Appendix 1	State Sampling Collection Dates				
A	Appendix 2	Sampling Regions by State				
A	Appendix 3	Sample Profile by Origin				
A	Appendix 4	Sampling Period and Distribution by Commodity				
A	Appendix 5	EPA Targeted Pesticides in PDP - Tolerances				
A	Appendix 6	Other Pesticides in PDP - Tolerances				
A	Appendix 7	EPA Targeted Pesticides in PDP - LODs and LOQs				
A	Appendix 8	Other Pesticides in PDP - LODs and LOQs				
A	Appendix 9	Distribution of Residues Detected by Commodity				
A	Appendix 10	Distribution of Residues Detected by Pesticide				
A	Appendix 11	Multiple Pesticide Residues Detected				
A	Appendix 12	Tolerance Violations Reported to FDA				
ł	Appendix 13	Chemical Action of Pesticides Detected by PDP				

EXECUTIVE SUMMARY

Background

In May, 1991, the U.S. Department of Agriculture implemented the Pesticide Data Program (PDP) to collect objective, comprehensive data on pesticide residues in fresh fruits and vegetables. By having access to pesticide residues which are measured as close to the consumer level as possible, the Environmental Protection Agency can more accurately determine exposure, and thus better estimate dietary risk to the consumer. PDP is a multi-agency program with planning, policy, and procedural efforts coordinated among the U.S. Department of Agriculture (USDA), the Environmental Protection Agency (EPA), and the Food and Drug Administration (FDA). All data produced by PDP will be available for use by EPA to conduct dietary risk assessments, address pesticide reregistration issues, and complete the special review of specific pesticides. Figure A gives an overview of program management and operations.

To expedite program implementation, AMS established Cooperative Agreements with agencies in six States (California, Florida, Michigan, New York, Texas, and Washington) to collect and analyze PDP samples. These States were selected because they represent diverse geographic areas of the country, approximately 40 percent of the Nation's population, and a large percentage of the fresh fruits and vegetables grown in the United States. Commodities chosen for inclusion in the program were among those most prevalently consumed by the American public, and pesticides targeted for data collection were selected by EPA in consultation with USDA. Participating States were assigned a specific number of samples to collect per month based on each State's population. Samples were collected at sites such as terminal markets and large distribution centers, which allows for sampling as close to the consumer level as possible. Sampling at these locations also provides grower and packer information, post-harvest pesticide use, and takes into account pesticide degradation that has occurred during transit and storage.

1992 Program Operations, January-June

The January-June 1992 Report presents the data for the first six months of 1992. The number of commodities included in the program remained at 7 in January, but was increased in February to include celery, green beans, and peaches, for a total of 10 commodities. The participating States remained at six, with a total of eight testing facilities. A USDA regional laboratory, needed to perform special analysis, became PDP's ninth testing facility in May.

Each State provided AMS with a quarterly sampling plan following PDP sampling guidelines, which required that sampling dates and sites be selected at random. Uniformity of sampling technique and strict adherence to the guidelines were emphasized. Participating laboratories were required to meet rigorous quality assurance/quality control (QA/QC) criteria. To facilitate this goal, PDP provided similar instrumentation for each laboratory and provided training on instrument use that was tailored to program needs.

During the first six months of 1992, some 2,859 samples were collected and analyzed. Individual allocation of samples by State was as follows: California (769), Florida (435), Michigan (386), New York (507), Texas (487), and Washington (275). These produce samples originated from six participating States, 25 other States, and 13 foreign countries. Of the 2,859 samples, 1,664 (58%) contained detectable levels of 1 or more pesticides.

The data collection requirements and advanced analytical technology utilized by PDP have resulted in a significant number of residue detections in some commodities. For example, in apples, celery, grapes, and peaches, approximately 80 percent of the samples tested contained detectable residues, and in some cases more than one residue was detected in an individual sample. However, as many as 47.2 percent of all residues detected were below 0.10 parts per million, with 7.6 percent of the detections below 10 parts per billion.

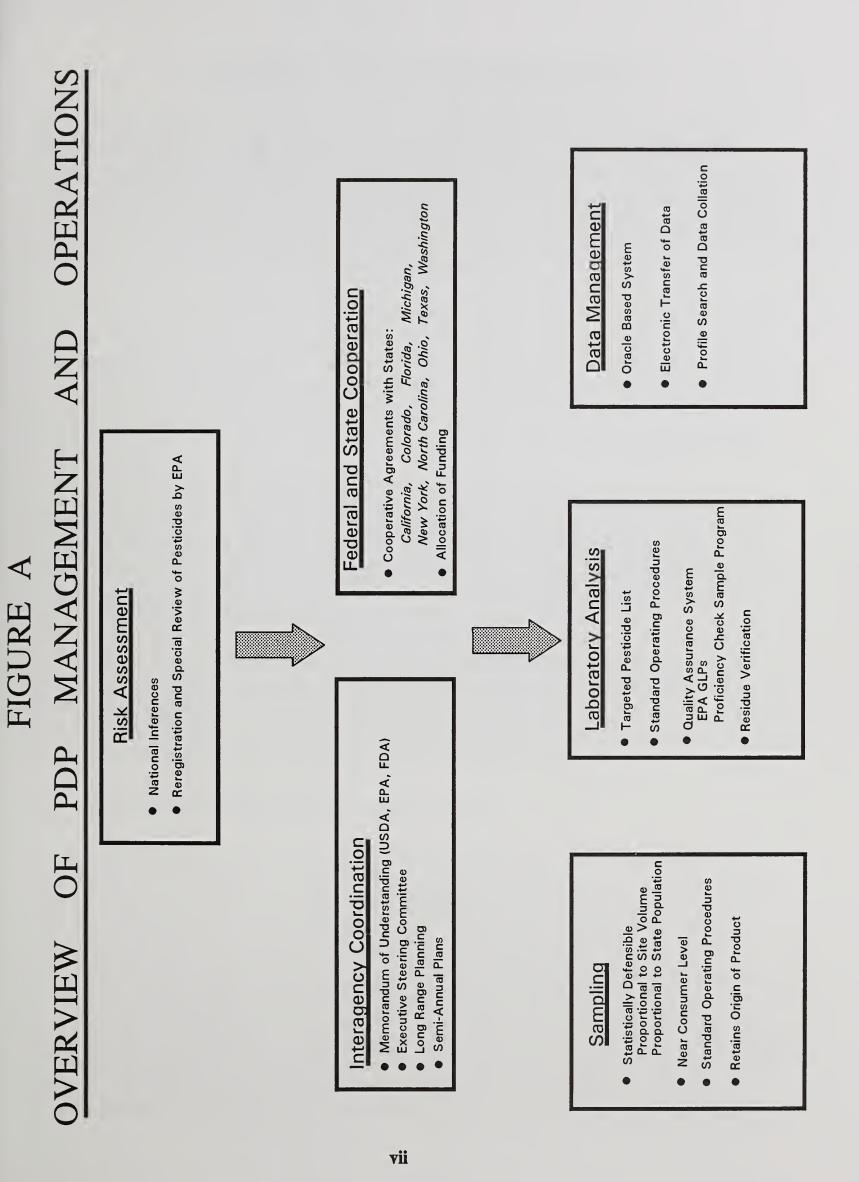
In general, the levels of pesticide residues detected were substantially below tolerances. Violative residues were detected in 19 of the samples, 6 of which were in imported commodities. Of the 19 violations found, 5 exceeded the tolerance level and the other 14 had residues where no tolerance is established. Although PDP does not have enforcement authority, AMS and the States do notify FDA when violations are found. This data may assist FDA by pinpointing areas where closer surveillance may be required.

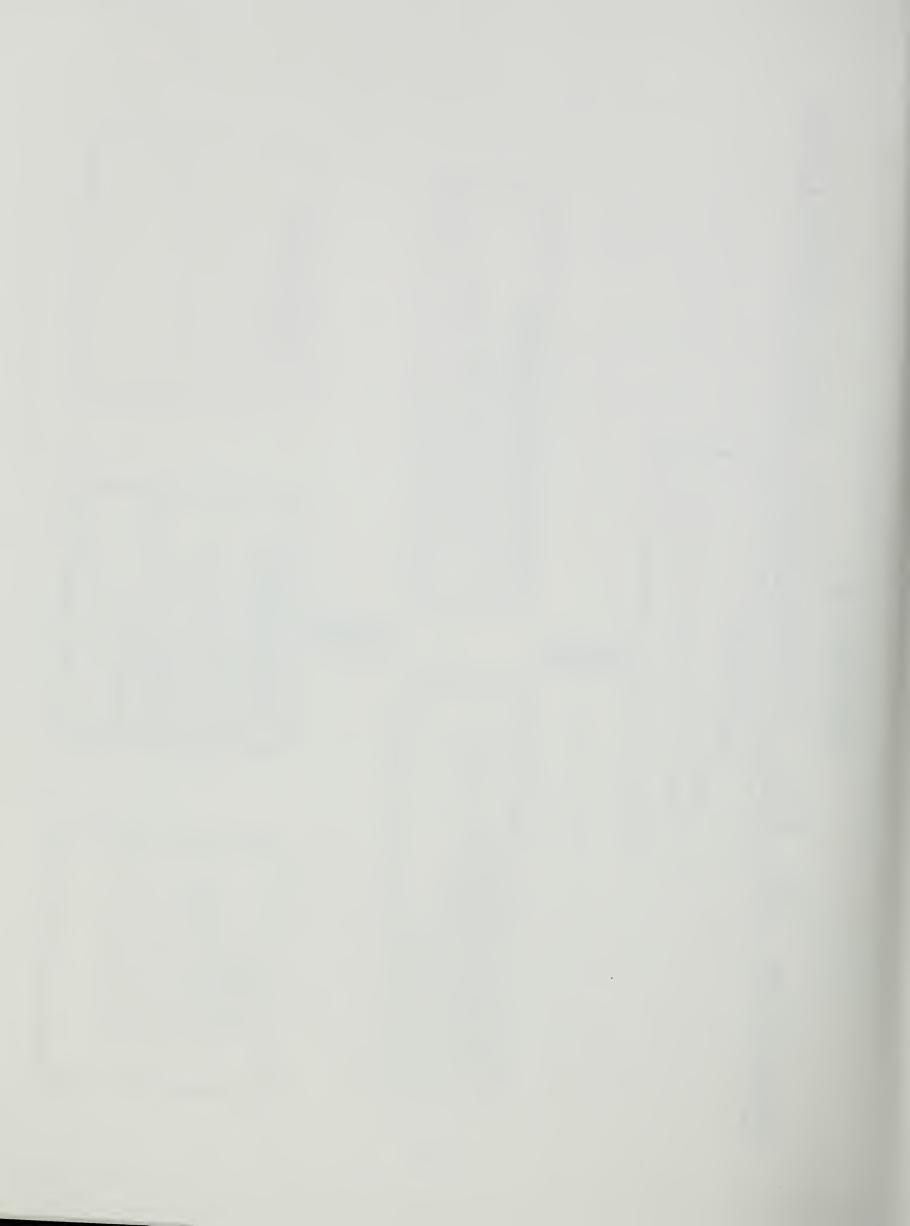
1992 Program Operations, July-December Preview

As of July 1, 1992, samples collected in all six participating States were being analyzed for 2,4-D and bromoxynil. On July 20-23, AMS hosted the fifth PDP Federal-State Meeting in conjunction with the Florida Pesticide Residue Workshop. The Sampling and Laboratory Standard Operating Procedures (SOPs) were discussed at the meeting, both of which were completed in December.

In August, AMS established Cooperative Agreements with Colorado, North Carolina, and Ohio for sample collection only. These three new States and AMS agreed that samples collected would be analyzed by one or more of the other participating laboratories. The addition of these States increased the segment of the Nation's population represented by PDP sampling to approximately 50 percent and also provided for a greater degree of regional diversity.

Broccoli and carrots were added to the program October 1, for a total of 12 commodities. On October 20-21, AMS hosted the 6th PDP Federal-State Meeting. Among topics discussed at the meeting were modifications to the PDP sampling protocol to alter the probability of site selection.


The PDP Calendar Year 1992 Report, summarizing pesticide residue data for all of 1992, will be published by the fall of 1993. This annual report will also provide more detailed information on distribution ranges of residue levels for selected pesticide/commodity pairs.


1993 Preview

In January 1993, PDP implemented a statistically defensible sampling plan whereby the probability of site selection is based on the amount of produce distributed by the site. This plan was developed with the statistical support of the USDA National Agricultural Statistics Service (NASS), which will provide long-term maintenance and support for the sampling system. Information obtained through PDP sampling provides data which can be used to make national inferences based on the States sampled. Sample collection and analysis for the three new States also began in January, as well as testing for at least five selected N-methyl carbamates.

Formetanate analysis for apples and peaches will begin in July 1993, whereas analysis for grapefruit and oranges will begin later in the year.

Testing procedures will be evaluated for additional pesticides such as avermectin, ethephon, oxadixyl, propargite, thiodicarb, and thiophanate methyl.

SECTION 1.0 - INTRODUCTION

The U.S. Department of Agriculture (USDA) implemented the Pesticide Data Program (PDP) in May 1991, to collect objective, comprehensive data on pesticide residues in selected fresh fruits and vegetables. By having access to pesticide residues which are measured as close to the consumer level as possible, the Environmental Protection Agency (EPA) can more accurately determine exposure, and thus better estimate dietary risk to the consumer. PDP data will also be available for use by EPA to address pesticide reregistration needs, and complete the special review of specific pesticides.

The USDA's Agricultural Marketing Service (AMS) has been charged with implementation and management of PDP. The agency serves as liaison with the participating States, the Environmental Protection Agency (EPA), and the Food and Drug Administration (FDA) to evaluate data collection needs for pesticide residue information, develop program plans, and prioritize the inclusion of commodities and pesticides in PDP. Day-to-day operations are managed through frequent communication between AMS and the participating States and regional laboratories.

EPA consults with USDA to develop the list of pesticide/commodity pairs targeted for data collection by PDP. The EPA list is revised periodically to address changes in data needs. In addition to the pesticides requested by EPA, other compounds have been included in the program over time, based on their frequency of detection by PDP. Program operations are designed so these revisions in the testing profile can be easily implemented. Figure 1.0 shows all pesticides currently being tested in PDP.

PDP's data recording and coding system for pesticide residues and commodities follows FDA's coding system, which enhances uniform data reporting among government agencies. In addition, information collected by the program may assist FDA by providing information on the use of post-harvest fungicides, and by pinpointing areas where closer surveillance may be required as a follow-up to apparent violations identified by PDP.

1.1 <u>1992 Program Operations, January-June</u>

The six participating States (California, Florida, Michigan, New York, Texas, and Washington) were selected because they represent diverse geographic areas of the country, approximately 40 percent of the Nation's population, and a large percentage of the fresh fruits and vegetables grown in the United States. Three of the States also distribute a significant amount of produce to other States. For example, 50 percent of Hawaii's and 75 percent of Nevada's produce comes from California, and 95 percent of Alaska's produce comes from Washington. New York supplies 60 percent of New Jersey's produce, as well as 25 percent of the produce distributed to three of the New England States (Connecticut, Massachusetts, and Vermont). Although these seven States are not PDP participating States, PDP data will apply to a significant portion of their population. Ten to 20 percent of the produce distributed to Arizona, Connecticut, Massachusetts, New Mexico, Oklahoma, Oregon, Vermont, and Wyoming is routed through one or more of the PDP participating

States. Figure 1.1 shows the geographic location of the participating States and other States to which there is a major distribution of produce.

The six participating States were assigned a number of samples to collect per commodity each month based on the State's population. The following table indicates the number of samples assigned per State and the annual totals for each commodity sampled.

Sample Assignments By State

State	<u># of Samples Per</u> Commodity Each Month	<u>Annual Total</u> Per Commodity
California	14	168
Florida	8	96
Michigan	7	84
New York	9	108
Texas	9	108
Washington	_5	60
TOTALS	52	624

Commodities chosen for inclusion in the program were among those most prevalently consumed by the American public.

The January-June 1992 report presents PDP data for the first six months of 1992. The number of commodities included in the program remained at seven in January, but was increased in February to include celery, green beans, and peaches, for a total of 10 commodities. The number of EPA targeted pesticides in the program increased from 11 to 13 in March, and, in April, New York began testing for 2,4-D and bromoxynil. In May, PDP enlisted the services of USDA's Animal and Plant Health Inspection Service (APHIS) laboratory to begin testing for benomyl in three commodities (apples, bananas, and green beans), bringing the number of EPA-targeted pesticides to a total of 16, and the number of testing facilities to a total of 9. In addition, 34 other compounds were detected by PDP during the first half of 1992, 13 of which were from the updated November 1992 EPA list.

A total of 2,859 samples were collected and analyzed during the first six months of 1992, 1,664 (58 percent) of which had detectable residues. A total of 42 different pesticides were found. Many samples contained multiple residues, ranging from two to eight detected per sample.

1.2 <u>1992 Program Operations, July-December Preview</u>

In July, the APHIS laboratory began 2,4-D and bromoxynil analysis on samples from Florida, Michigan, Texas, and Washington--while California began testing its own samples. By July, samples collected in all six States were being analyzed for 2,4-D and bromoxynil (New York began analyzing for these compounds in April).

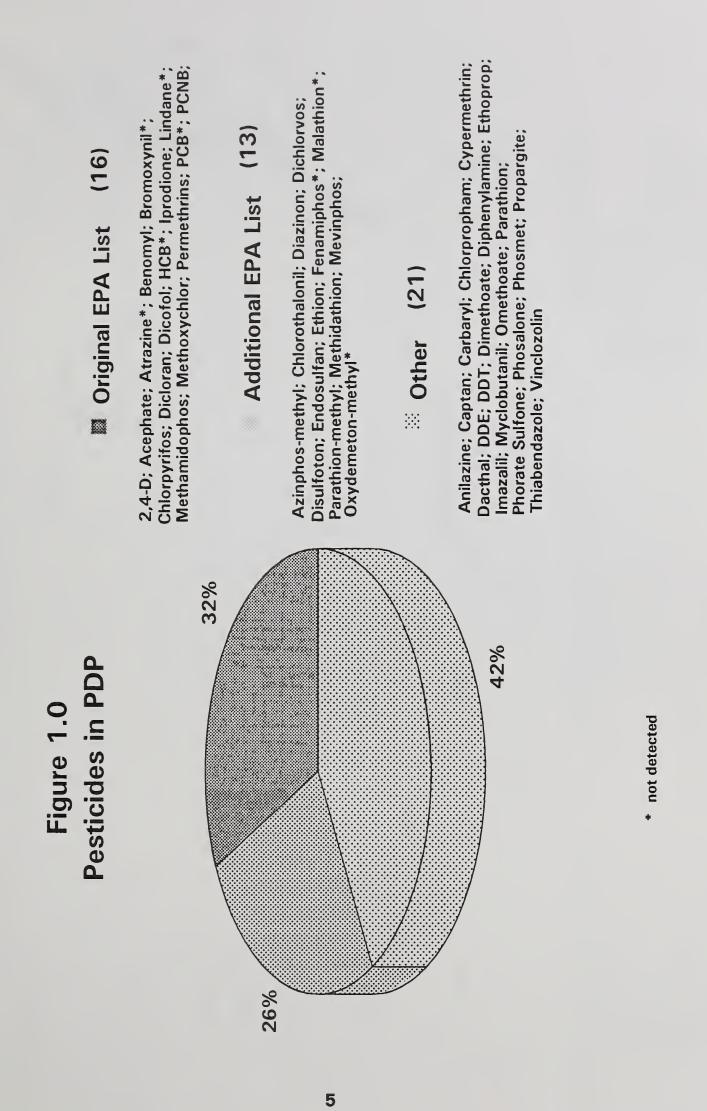
July 20-23, AMS hosted the fifth PDP Federal-State Meeting in conjunction with the Florida Pesticide Residue Workshop. Discussed at the meeting were the Sampling and Laboratory Standard Operating Procedures (SOPs), both of which were published in December as part of the AMS Semi-Annual Program Plan for January-June 1993.

In August, AMS established Cooperative Agreements with Colorado, North Carolina, and Ohio for sample collection only. Under these agreements, samples collected by the new States will be analyzed by one or more of the other participating laboratories. With the addition of these States, the segment of the Nation's population represented by PDP sampling was increased to approximately 50 percent.

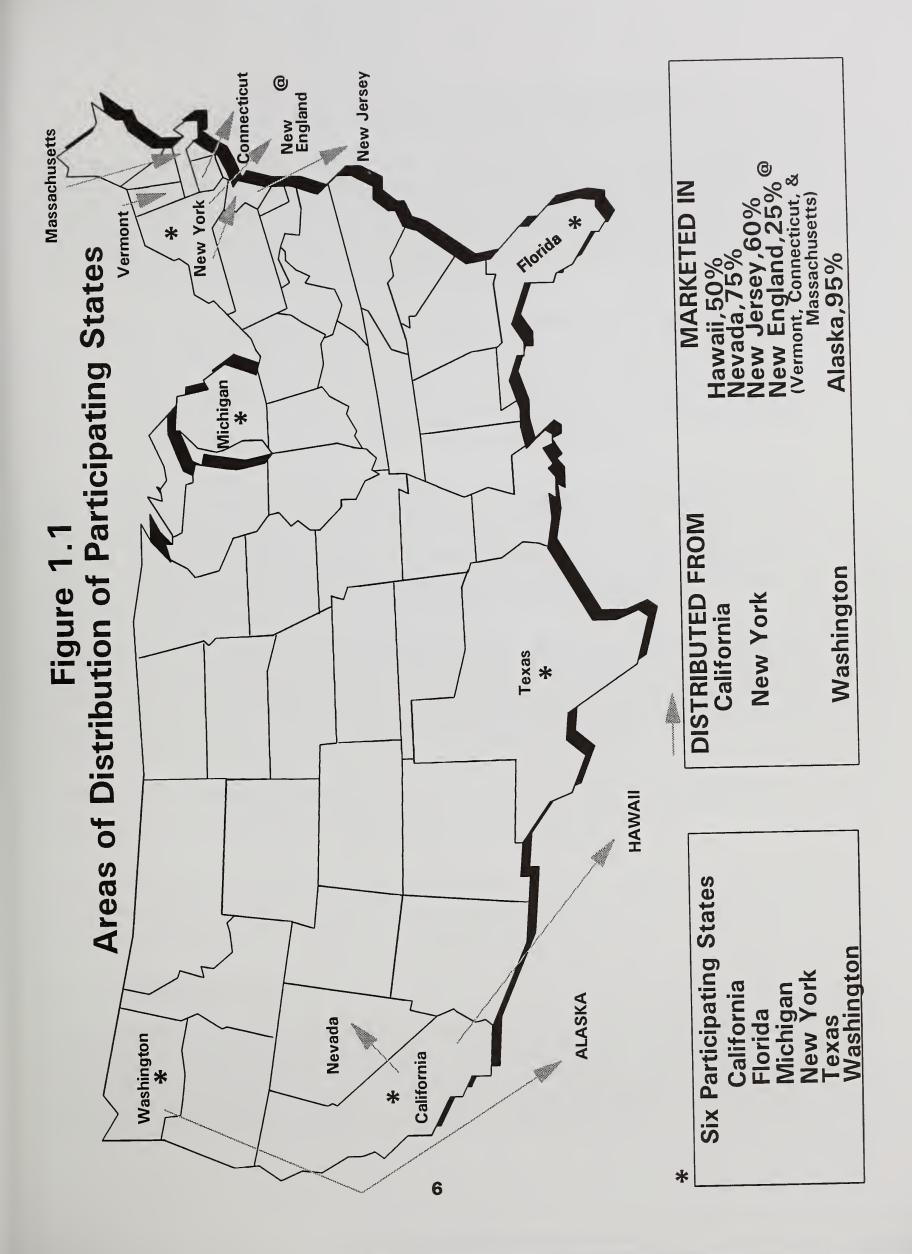
Adding these States also provided for a greater degree of regional diversity. The monthly sample assignment per commodity for the new States was: Colorado-two, North Carolina-four, and Ohio-six.

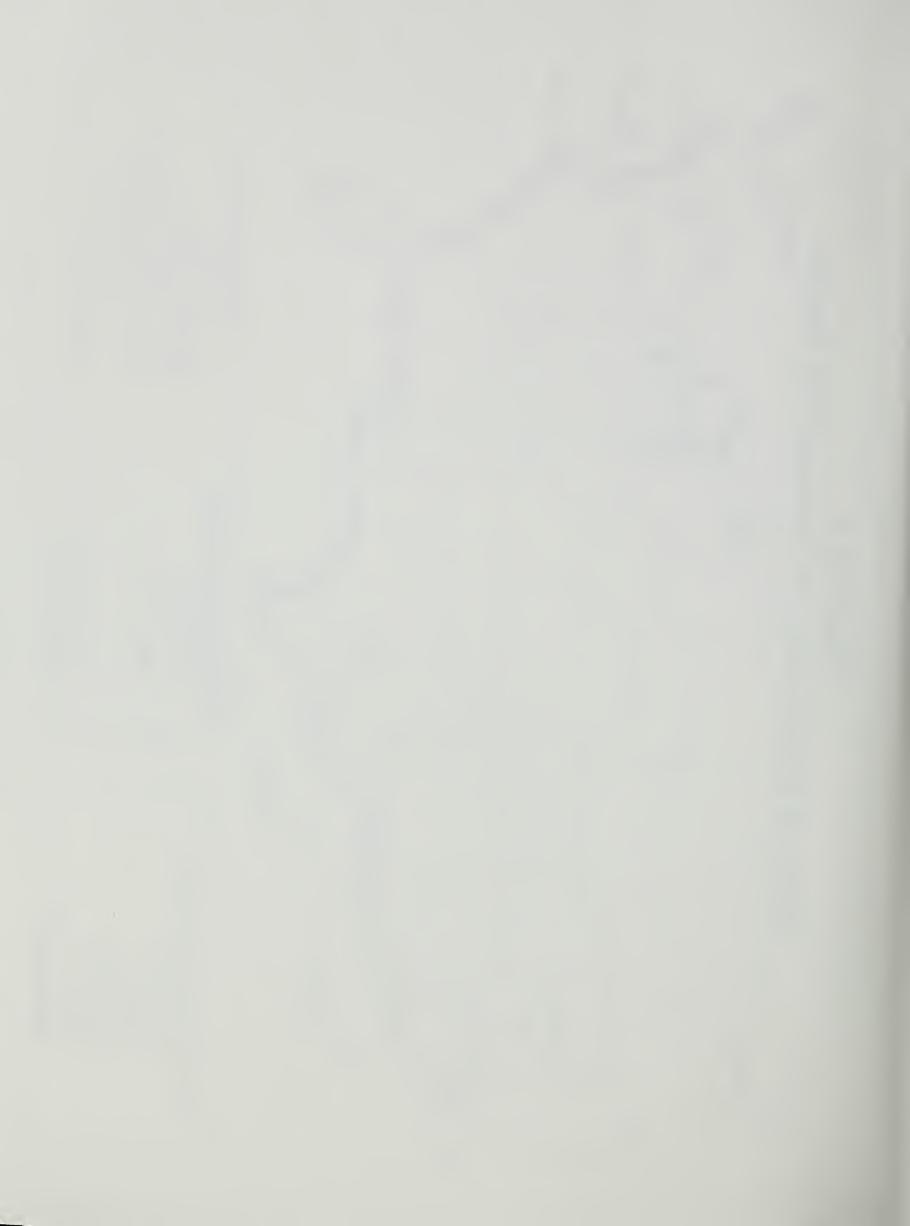
Broccoli and carrots were added to the program in October, bringing the total number of commodities to 12.

October 20-21, AMS hosted the sixth PDP Federal-State Meeting. Discussed at the meeting were modifications to the PDP sampling protocol. Site volume information needed for these modifications was gathered throughout the remainder of 1992, and a site weighting system was completed.


The PDP Calendar Year 1992 Report, summarizing pesticide residue data for all of 1992, will be published by the fall of 1993. This annual report will also provide more detailed information on the distribution of residue levels for selected pesticide/commodity pairs.

1993 Preview


In January 1993, PDP implemented a statistically defensible sampling plan whereby the probability of site selection is based on the amount of produce distributed by the site. This plan was developed with the statistical support of the USDA National Agricultural Statistics Service (NASS), which will provide long-term maintenance for the sampling system. Information obtained through PDP sampling provides data which can be used to make national inferences based on the States sampled. Sample collection and analysis for the three new States also began in January, as well as testing for at least five selected N-methyl carbamates.


Formetanate analysis for apples and peaches will begin in July 1993, whereas analysis for grapefruit and oranges will begin later in the year.

Testing procedures will be evaluated for additional pesticides such as avermectin, ethephon, oxadixyl, propargite, thiodicarb, and thiophanate methyl.

SECTION 2.0 - SAMPLING OVERVIEW

PDP data will be used to make national inferences for dietary risk assessment. For this reason, PDP's sampling protocol is designed to be objective, random, and statistically defensible. From the onset of PDP in 1991, the protocol met the first two criteria. This was accomplished by: (1) the number of samples collected each month being proportional to State population, (2) requiring that sampling dates and sites be selected at random, and (3) no predetermination being made regarding product variety or origin.

In the spring of 1992, AMS began researching methods to enhance the sampling protocol to make it more statistically defensible. To help accomplish this objective, AMS enlisted the services of USDA's National Agricultural Statistics Service (NASS). NASS introduced a "site weighting" concept by which the probability of a site being selected is proportional to the volume of produce it distributes. Research continued throughout the remainder of 1992 to finalize development and implementation of the site weighting system.

PDP samples were collected by the six participating States at sites such as terminal markets and large distribution centers. The volume of produce distributed by these sites varies depending on their geographic location and the area they serve. In the larger States, such as Texas, as many as 161,500 tons of produce may be distributed by one site in a given year. The States were responsible for researching and compiling a list of appropriate sampling sites, which varied in number from 18 in Washington to 284 in California.

Sample collection at these locations provided for obtaining produce as close to the consumer as possible, where information on the grower and packer is still available. Data collected closer to the time of consumption presents a more accurate picture of residues than data collected at the farm gate. It also takes into account pesticide degradation that occurs during transit and storage, as well as the application of post-harvest fungicides.

As discussed in the Introduction (Section 1.0), the participating States were assigned a number of samples to collect per commodity each month. This number ranged from 5 in Washington to 14 in California, and was based on State population.

Representatives of each participating State were trained in the PDP sampling procedures, and were responsible for training the sample collectors in their respective States. Uniformity of sampling technique and strict adherence to the PDP sampling procedures were emphasized.

2.1 <u>Sampling Procedures</u>

The Science Division of AMS provided a quarterly program plan specifying the commodities to be collected. In turn, each State was required to submit to AMS a quarterly sampling plan designating the date(s) of collection and sampling sites per commodity. Both the dates and sites were chosen at random; however, a commodity could not be sampled twice from the same site in a given month. The States were asked to collect all samples for one commodity

on the same date, or within two consecutive dates, and to ensure that samples would arrive at the testing facility within 24 hours of collection.

Sample collectors were provided with uniform sampling procedures to follow at the collection sites. Samples were selected at random, with no predetermination made regarding product variety or origin. A sample information form was filled out for each sample collected, which included the State abbreviation, date, site number, and commodity code. The information provided by these four items was combined to generate a unique identification number for that sample. Information requested on the form also included: (1) whether the sample was domestic or imported; (2) if imported, country of origin; (3) name of sampling site, grower, and packer; and (4) a listing of potential or known post-harvest fungicides.

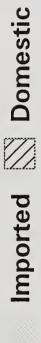
States were requested to utilize alternative sampling sites in the event that a commodity was not available at the original sampling site. This would better enable the States to fulfill the objectives of the program plan (i.e., number of samples to collect per commodity). The alternate sites were also chosen at random, but a certain amount of flexibility was provided for logistical purposes.

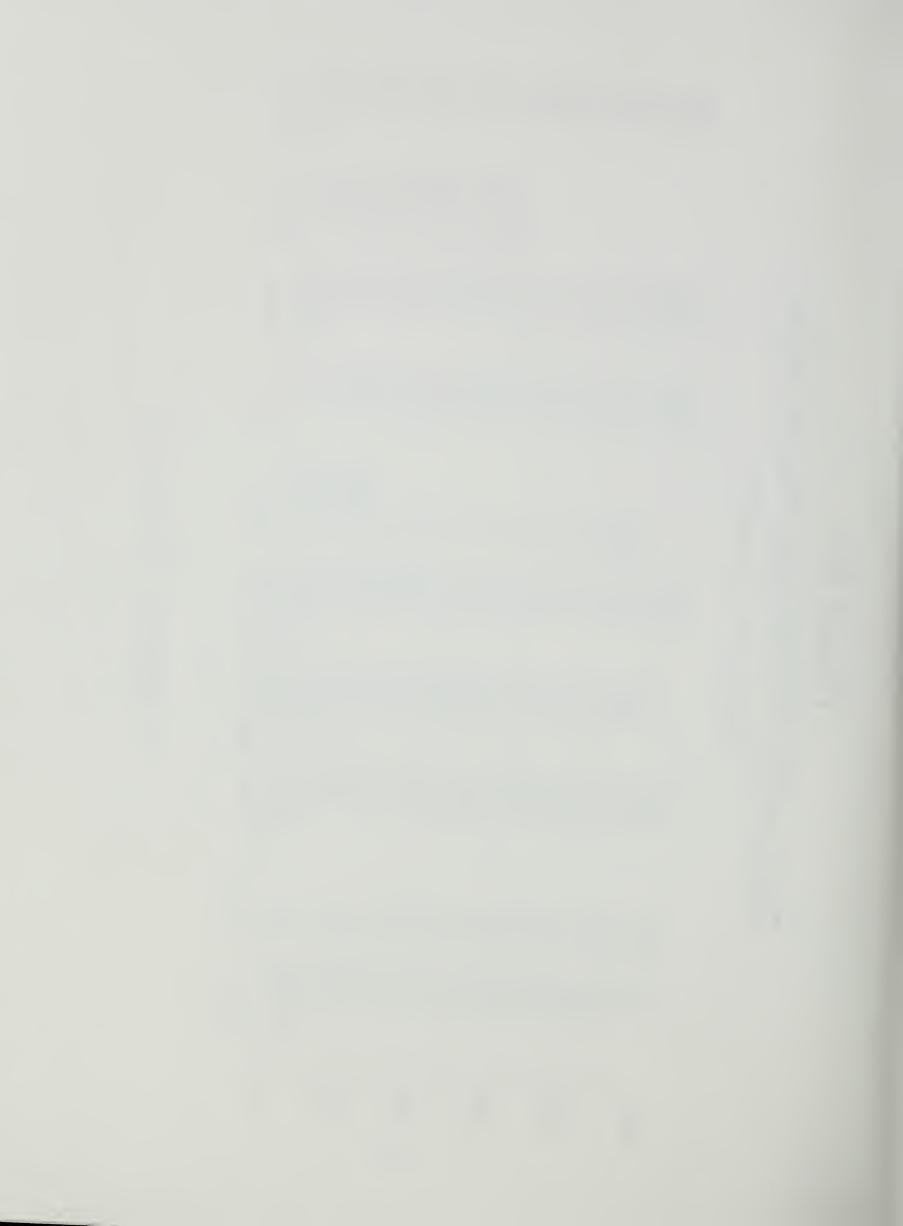
2.2 <u>Statistics on Samples Collected</u>

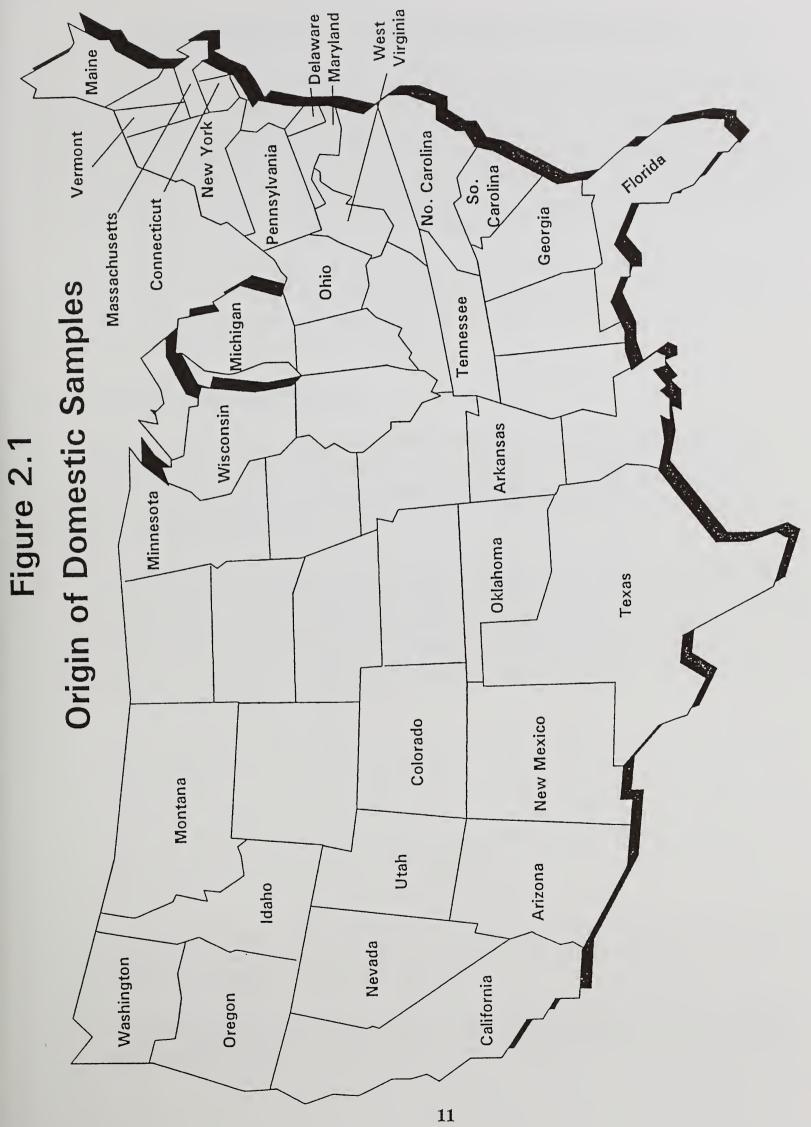
A total of 2,859 samples of fresh produce were collected January-June 1992. States were instructed to collect at least a 5-pound sample for each applicable testing facility. Individual allocation of samples by State is as follows: California (769), Florida (435), Michigan (386), New York (507), Texas (487), and Washington (275).

Appendix 1 provides a calendar for each of the six months, January-June. Each date selected for sampling contains the State abbreviation, the commodity, and the number of samples collected. The individual commodity and monthly totals are, in some cases, less than the assigned number of samples due to the unavailability of product at either the original or the alternative sampling site. At the bottom of each calendar is the total number of samples collected, and the number of commodities in the program during that month. The information in this appendix is listed alphabetically by the two-letter commodity code abbreviation. Likewise, the commodity information provided in the other appendices is alphabetized in the same manner. The commodity codes utilized by PDP are: apples-AP, bananas-BN, broccoli-BR, celery-CE, carrots-CR, green beans-GB, grapefruit-GF, grapes-GR, lettuce-LT, oranges-OG, peaches-PC, and potatoes-PO.

Appendix 2 lists the geographic regions in each State, the number and percent of sampling sites in each region, and the number and percent of samples collected in each region. The totals following each State, and at the end of the table, are for the entire January-June sampling period. As shown, the total number of sites varies from 18 in Washington to 284 in California, and the total number of samples collected varies from 275 in Washington to 769 in California.


Samples collected by PDP in the first six months of 1992 originated from the six participating States, 25 other States, and 13 foreign countries. Sample collection was based on general commodity type, regardless of the variety or place of origin. Appendix 3 shows the origin of each sample collected, by commodity. Other information shown in the appendix is: 1) 62 percent of the apples were from Washington; (2) 100 percent of the bananas were imported; (3) the majority of celery, green beans, grapefruit, and oranges originated from either California or Florida; (4) 81 percent of the grapes were imported; (5) all lettuce samples were domestic, with 87 percent grown in California; (5) 87 percent of the imported peaches came from Chile; and (6) potato samples originated from a wide variety of States. Figure 2.0 shows the percentage of imported versus domestic samples per commodity. Figure 2.1 gives the geographic origin of domestic samples.


Appendix 4 gives the number of samples collected each month by commodity, and the breakdown of number and percentage of imported versus domestic. As Appendix 4 indicates, 717 (25 percent) of the samples were imported, and 2,142 (75 percent) were domestic. Celery, green beans, and peaches were not included in the program until February; therefore, their sample totals are lower. Additionally, due to seasonal variations, a number of peach samples were not available during March, April, and May.


.

Commodity Distribution Percentages Imported vs. Domestic Figure 2.0

SECTION 3.0 - LABORATORY OVERVIEW

In the first half of 1992, PDP participating laboratories performed analyses for chlorinated, organophosphorus, and organonitrogen pesticides in 2,859 samples. The number of EPA-targeted pesticides in the program increased from 11 in January to 13 in March; and, in April, New York began testing for 2,4-D and bromoxynil. Benomyl testing was added in May, bringing the number of EPA-targeted pesticides to a total of 16. In addition, 34 other compounds are tested by PDP, 13 of which were added to the EPA list as of January 1993. These pesticides and their tolerances are listed in Appendices 5 and 6.

For the determination of benomyl, which requires a single residue method, PDP enlisted the services of USDA's Animal and Plant Health Inspection Service (APHIS) laboratory to analyze three commodities (apples, bananas, and green beans). With the addition of APHIS, the number of testing facilities increased to nine.

3.1 Quality Assurance Program

To achieve data equivalency among participating laboratories, PDP required adherence to rigorous quality assurance/quality control (QA/QC) criteria. To facilitate this goal, PDP purchased similar equipment for all participating laboratories and provided training on instrument use, which was tailored to program needs. PDP's quality assurance program encompasses five elements:

- <u>Proficiency Check Samples</u> All facilities were required to participate in the PDP Check Sample Program. Each quarter, three to four commodities, containing several pesticides with known quantities, were sent to the participating laboratories and tested under the same conditions as routine samples. The resulting data were used to determine performance equivalency among the testing laboratories, and to evaluate individual laboratory performance.
- <u>Quality Control</u> Since quality control requirements are the same for one sample as for several samples, it is more economical and efficient to collect and process the samples as a set. Thus, laboratories were permitted to refrigerate incoming samples of the same commodity for up to 72 hours, to allow for different sample arrival times from the collection sites. PDP quality control guidelines require that samples be tested as part of an analytical set, which includes the sample set and the following components:

1. Reagent Blank: An amount of distilled water, equivalent to the natural moisture content of the commodity, is run through the entire analytical process to determine glassware cleanliness and system integrity.

2. Matrix Blank: A previously analyzed sample of the same commodity, which contains either very low concentrations of known residues or no detectable residues,

is divided into two portions. The first portion is used to give background information on naturally occurring chemicals, and the second one is used to prepare a matrix spike.

3. Matrix Spike(s): A portion(s) of matrix blank is spiked with all pesticides of interest to PDP prior to extraction. The matrix spike is used to determine the accuracy of the analyst and instrument performance.

4. **Process Control Spike:** A compound of physical and chemical characteristics similar to those of the pesticides being tested is used to evaluate the analytical process on a sample-by-sample basis. Each of the analytical set components, except for the reagent and matrix blanks, is spiked with process controls.

5. Storage Spikes: If a sample set is going to be frozen as a homogenate for more than 72 hours prior to analysis, analysts are required to prepare storage spikes in order to demonstrate the validity of the set. Storage spikes are prepared in the same manner as matrix spikes, but do not remove the requirement to run a fresh matrix spike at the time of analysis.

- <u>Method Performance and Confirmation</u> Laboratories are required to determine the limits of detection (LOD) and limits of quantitation (LOQ) for each commodity/pesticide pair. Confirmation by mass spectrometry, or a suitable alternate detection system, is required for all initial findings. If a finding is violative, the sample is reanalyzed in duplicate from the frozen homogenate, along with the appropriate blanks and a spike of the violative residue at the suspected level.
- <u>Standard Operating Procedures (SOPs)</u> Standard Operating Procedures were developed to provide uniform administrative, sampling, and laboratory procedures. After submission, all data generated by the laboratories are reviewed for completeness and adherence to PDP requirements.
- <u>On-Site Reviews</u> On-site reviews were performed to determine compliance with SOPs. Improvements in laboratory procedures were made as a result of the on-site reviews.

3.2 <u>Sample Preparation</u>

1 -14 -

Samples were shipped directly to the laboratory performing the analyses where, upon arrival, they were visually examined for acceptability. Any sample received in poor condition (extensive bruising, off odor, decay, fungal growth, etc.) was discarded. Accepted samples were prepared emulating the practices of the average consumer, to more closely represent actual exposure to residues. For example, produce such as bananas, oranges, and grapefruit was peeled; for lettuce and celery, wilted leaves, debris, and other inedible portions were removed. Next, samples were rinsed under cold tap water to remove soil and grit.

Each sample was homogenized using choppers or blenders, then separated into analytical portions (aliquots) for analysis. In the event that testing could not be performed immediately, the entire sample set, plus all quality control samples, were frozen following PDP's QA/QC requirements. Thus, a set was required to be spiked with the process control spike and all applicable pesticide standards prior to being frozen at -40 °C or lower. At the time of analysis, the spikes provided information on whether degradation had occurred while the sample was frozen, therefore helping to determine the acceptability of the data. Aliquots, which could be needed for replication of analyses or for verification testing, were also retained frozen.

3.3 Sample Analysis

Methods of analysis used by Florida, Michigan, New York, and Texas were variations of the Luke extraction procedures developed by FDA. California and Washington used the multiresidue method developed by the California Department of Food and Agriculture (CDFA). Sample extractions and cleanup preparations were based on organic solvent/partition procedures to isolate pesticide chemicals.

Initial identification and quantitation of pesticides were achieved through various types of chromatography. Confirmation was accomplished by mass spectrometry (identifies the structures of compounds) or by alternate detection systems when applicable. Confirmation is necessary because of the complexity of commodity matrices and the extremely low concentration levels of detected residues. Thus, the confirmatory analysis provided an extra measure of confidence in both the identification of the pesticide residue and its concentration.

Limits of detection (LODs) and limits of quantitation (LOQs) for testing laboratories for each of the EPA-targeted pesticides are shown in Appendix 7. LODs and LOQs for other pesticides in PDP are shown in Appendix 8.

SECTION 4.0 - SAMPLE RESULTS

All commodities were screened for organochlorine, organophosphate, and organonitrogen compounds. These three pesticide screening processes allow for the detection of approximately 150 compounds. The data collection requirements and advanced analytical technology utilized by PDP have resulted in a significant number of residue detections in some commodities. For example, in apples, celery, grapes, and peaches, approximately 80 percent of the samples tested contained detectable residues; and, in some cases, more than one residue was detected in an individual sample. However, as many as 47.2 percent of all residues detected were below 0.10 ppm, with 7.6 percent of the detections below 10 ppb (see Table 1, Distribution of Pesticide Residue Concentrations by Commodity).

In general, the levels of pesticide residues detected were substantially below tolerances. Table 2 compares mean quantifiable concentrations of pesticide residues, detected in at least 10 percent of the samples, to established tolerances. Of the 36 pesticide/commodity pairs in Table 2, only four pairs resulted in a mean concentration which exceeded 10 percent of the tolerance: chlorpyrifos/peaches (30.0 percent), thiabendazole/bananas (26.8 percent), acephate/green beans (24.7 percent), and dimethoate/grapes (15.4 percent). Six pairs (captan/apples, captan/grapes, captan/peaches, endosulfan/apples, iprodione/grapes, and phosmet/peaches) had mean concentrations below 1 percent of established tolerances.

The following gives a brief overview of the sample results:

<u>APPLES:</u> Out of the 309 samples collected and analyzed, 239 or 77.3 percent of the samples had a minimum of 1 pesticide residue detected. Twenty different pesticides were detected, with thiabendazole as the most frequently found. Other pesticides with high incidence levels are diphenylamine, azinphos-methyl, benomyl, chlorpyrifos, and endosulfans. The total number of pesticide residues detected, including multi-residue findings in a single sample, was 517. Three domestic violations were found for chlorothalonil, chlorpropham, and vinclozolin, for which no tolerance has been set by EPA.

<u>BANANAS</u>: Out of the 311 samples collected and analyzed, 69 or 22.2 percent of the samples were found to contain pesticide residues. Three different pesticides were detected, two of which have post-harvest fungicide uses. The most frequently detected pesticide was thiabendazole, which was found in 66 samples. The total number of pesticide residue occurrences in all samples was 72. One imported banana sample contained thiabendazole residues which exceeded the EPA tolerance level.

<u>CELERY:</u> Out of the 259 samples collected and analyzed, 205 or 79.2 percent of the samples had detectable pesticide residues. The pesticides most frequently found were permethrins, chlorothalonil, methamidophos, dicloran, and acephate. The total number of pesticide residue occurrences in all samples was 398. Five domestic

samples contained pesticide residues having no established tolerance level set by EPA. Three of these five samples contained DCPA (Dacthal) residues, and the other two contained iprodione.

<u>GREEN BEANS</u>: Out of the 238 samples collected and analyzed, 157 or 66 percent of the samples contained pesticide residues. The four most frequently found pesticides were endosulfans, methamidophos, chlorothalonil, and acephate. One domestic sample containing acephate and methamidophos had levels which exceeded the combined EPA tolerance. Two samples containing methamidophos (one domestic and one imported) and one imported sample containing permethrins had residues where no tolerance was established by EPA. The total number of pesticide residue occurrences for all green bean samples was 321.

<u>GRAPEFRUIT</u>: Out of the 310 samples collected and analyzed, 109 or 35.2 percent of the samples contained pesticide residues, with thiabendazole and imazalil as the most frequently found. Out of the 137 total pesticide residue occurrences, 5 different pesticides were found. No violations were found.

<u>GRAPES:</u> Out of the 297 samples collected and analyzed, 235 or 79.1 percent of the samples were found to contain pesticide residues. The four most frequently found pesticides were captan, vinclozolin, iprodione, and dimethoate. Three imported samples were found to contain pesticide residues exceeding the established tolerance levels. The three pesticide residues found in violation were chlorpyrifos, dimethoate, and parathion. Out of the 510 total pesticide residue occurrences, 16 different pesticides were found.

<u>LETTUCE:</u> Out of the 310 samples collected and analyzed, 105 or 33.9 percent of the samples were found to contain pesticide residues. The two most recurrent pesticides were endosulfans and permethrins. Sixteen different pesticides were found out of the 151 total pesticide residue occurrences. Two domestic samples contained chlorothalonil and chlorpyrifos residues, for which there are no established tolerances.

<u>ORANGES</u>: Out of the 311 samples collected and analyzed, 145 or 46.6 percent of the samples were found to contain pesticide residues. The two most frequently detected pesticides were thiabendazole and imazalil. There were 8 different pesticides detected from the 215 total pesticide residue occurrences. 2,4-D was detected by New York in two of the 27 samples tested.

<u>PEACHES:</u> Out of the 205 samples collected and analyzed for peaches, 169 or 82.4 percent of the samples contained pesticide residues. The five most frequently occurring pesticides were iprodione, captan, azinphos-methyl, clorpyrifos, and dicloran. One tolerance violation for dimethoate was found in one domestic sample. Out of the 344 total pesticide residue occurrences, 18 different pesticides were found. Propargite was detected by Florida in two of the 23 samples tested.

<u>POTATOES</u>: Out of the 309 samples collected and analyzed, 231 or 74.8 percent of the samples contained pesticide residues. Chlorpropham, the most frequently detected compound, was found in 68 percent of the 309 samples. Two other frequently occurring pesticides were DDE and thiabendazole. Out of the 304 total pesticide residue occurrences, 10 different pesticides were detected. No violations were found.

Appendix 9 gives a complete list of pesticides detected, by commodity. DDT and/or its metabolite DDE were found in celery, green beans, lettuce, peaches, and potatoes, although their presence is due to the environmental persistence of this chemical and not the result of new usage (use of DDT has been prohibited in the United States since 1973).

Appendix 10 gives the distribution of residue occurrences, by pesticide. The appendix is divided into three parts as follows: (A) pesticides from the original EPA list, (B) additional pesticides from the updated EPA list, and (C) other pesticides. Listed below each pesticide are the commodities in which the pesticide was detected, the States where the samples were collected, and the sample collection period. The Summary of Results section provides the total number of samples, and the number and percent of positives in those samples. Also given is the minimum detected value, or if the minimum detected value was below the quantifiable level (BQL), the range from BQL to the next quantifiable value is provided. The last column shows the maximum detected values reported. Concentrations are reported in either parts per million (M) or parts per billion (B). Concentrations lower than 0.10 M are expressed as 1-99 B. Higher concentrations are expressed in M.

4.1 <u>Multiple Residues Detected</u>

Different pesticides can be applied to a given crop in order to treat various pests that may affect the crop during a growing season. Having the capability to detect residues at concentrations much lower than tolerance levels has enabled PDP laboratories to confirm the presence of multiple residues in individual samples. These findings, which are presented in Appendix 11, show that, in one specific case, a sample contained the following eight pesticides: captan, endosulfans, omethoate, dimethoate, diphenylamine, thiabendazole, azinphos-methyl, and vinclozolin.

Appendix 11 is divided into four columns. Column A shows in descending order the number of residues that were detected in a single sample. Column B gives the number of samples found to contain the number of residues listed in Column A. Column C indicates the percentage of samples which contained the number of residues shown in Column A. Column D lists the three most frequently detected pesticides. In parentheses next to each pesticide is the number of positive findings for that pesticide. For example, row 2 under peaches shows that 14 samples contained 4 different residues each. Of the 205 total samples, 6.8 percent had 4 detectable residues per sample. The 3 most frequently detected pesticides were: iprodione with 12 positive findings, captan with 10 positive findings, and dicloran with 10 positive findings.

4.2 Non-Detected Residues

Of the 16 EPA targeted pesticides, atrazine, bromoxynil, HCB, lindane, and pentachlorobenzene (PCB) were not detected in any of the 2,859 samples. It should be noted, however, that atrazine and HCB have no registered uses for any of the PDP commodities. PCB is not a pesticide, per se, but is being monitored because it may be present as an impurity of the manufacturing process of some pesticides. PCB may also be present as a degradation product of HCB and quintozene. Bromoxynil and chlorothalonil testing were limited in scope with only one laboratory performing analysis in selected commodities.

4.3 <u>Tolerance Violations</u>

In order to take prompt corrective action, samples collected under enforcement programs have to be analyzed within hours of collection. PDP samples are not collected for enforcement purposes; therefore, quick sample turnaround is not essential. In fact, because of the complexity of the sample analysis requirements and the data review process, it may take 1 month or longer to complete a sample set. Furthermore, emphasis is placed on searching for residues at the lowest detectable levels for the pesticides of interest.

A violation occurs when a residue is found which exceeds tolerance levels set by EPA or when a residue is found for which there is no tolerance. Nineteen of the 2,859 samples contained violative residues, 6 of which were in imported commodities. As Appendix 12 indicates, 14 samples found in violation had residues where no tolerance was established by EPA for that pesticide/commodity pair. Under the Memorandum of Understanding signed by USDA, EPA, and FDA, the Pesticide Data Program is required to inform FDA of any violative residues found. This data may assist FDA by pinpointing areas where closer surveillance may be required. TABLE 1. DISTRIBUTION OF PESTICIDE RESIDUE CONCENTRATIONS BY COMMODITY -- JANUARY-JUNE 1992

					COMMODITIES	DITIES					
	Apples	Bananas	Celery	Green Beans	Grape- fruit	Grapes	Lettuce	Oranges	Peaches	Potatoes	Total
Total number of residues	517	72	398	321	137	510	151	215	344	304	2969
Number of residues ranging from 1 to 9 parts per billion	33	1	29	25	10	17	30	14	26	40	225
Percentage shown in parentheses	(6.4%)	(1.4%)	(7.3%)	(7.8%)	(7.3%)	(3.3%)	(19.9%)	(6.5%)	(7.5%)	(13.1%)	(7.6%)
Number of residues ranging from 10 to 99 parts per billion	197	49	204	119	66	201	83	81	120	56	1176
Percentage shown in parentheses	(38.1%)	(68.0%)	(51.2%)	(37.1%)	(48.2%)	(39.4%)	(55.0%)	(37.7%)	(34.9%)	(18.4%)	(39.6%)
Number of residues ranging from .10 to .99 parts per million	236	18	148	156	59	260	33	117	143	86	1256
Percentage shown in parentheses	(45.6%)	(25.0%)	(37.2%)	(48.6%)	(43.1)	(51.0%)	(21.8%)	(54.4%)	(41.6%)	(28.3%)	(42.3%)
Number of residues greater than 1.0 parts per million	45	0	11	19	1	30	з	2	46	116	273
Percentage shown in parentheses	(8.7%)	(%0)	(2.8%)	(5.9%)	(0.7%)	(5.9%)	(2.0%)	(%6.0)	(13.4%)	(38.2%)	(9.2%)
Number of residues Below the Quantifiable Level	9	4	9	7	1	6	2	1	6	Q	39
Percentage shown in parentheses	(1.2%)	(5.6%)	(1.5%)	(0.6%)	(0.7%)	(0.4%)	(1.3%)	(0.5%)	(2.6%)	(2.0)	(1.3%)

Pesticide	Tolerance (ppm)	Percentage of Samples with Detected Pesticide ¹	Mean of Residues Found ² (ppm)	Percent of Tolerance		
APPLES						
Azinphos-Methyl	2.0	22.7	0.10	5.0		
Benomyl	7.0	10.5	0.23	3.3		
Captan	25	9.7	0.16	0.64		
Chlorpyrifos	1.5	14.2	0.056	3.8		
Diphenylamine	10	35.0	0.74	7.3		
Endosulfans	2.0	12.0	0.016	0.64		
Thiabendazole	10	51.0	0.62	6.2		
BANANAS						
Thiabendazole	7.0	26.0	0.10	27.5		
CELERY						
Acephate	10	22.4	0.21	2.1		
Chlorothalonil	15	35.5	0.57	3.8		
Dicloran	15	11.3	0.30	2.1		
Methamidophos	1	14.3	0.026	2.6		
Permethrins	5.0	36.7	0.16	3.2		
GREEN BEAN	S					
Acephate	3	28.2	0.74	24.7		
Chlorothalonil	5	10.5	0.23	4.6		
Endosulfans	2.0	35.	0.16	7.5		
Methamidophos	NT	32.8	0.20	4.6		
GRAPEFRUIT						
Imazalil	10	11.3	0.18	1.8		
Thiabendazole	10	10.5	0.18	1.8		
GRAPES						
Captan	50	48.1	0.32	0.64		
Dimethoate	1	13.5	0.15	15.0		
Iprodione	60.0	39.7	0.29	0.48		

TABLE 2 Quantifiable Concentration Detected vs. Established Tolerances

Pesticide	Tolerance (ppm)	Percentage of Samples with Detected Pesticide ¹	Mean of Residues Found ² (ppm)	Percent of Tolerance
Vinclozolin	6.0	14.3	0.35	5.83
LETTUCE				
Endosulfans	2.0	14.8	0.0\$7	1.9
Permethrins	20.0	9.8	0.36	1.6
ORANGES				
Imazalil	10	27.3	0.16	1.6
Thiabendazole	10	43.2	0.34	3.4
PEACHES				
Azinphos-Methyl	2.0	14.8	0.16	9.0
Captan	50	13.2	0.29	0.58
Chlorpyrifos	0.05	12.2	0.015	30.0
Dicloran	20	42.0	0.70	3.5
Iprodione	20.0	44.9	0.93	3.4
Phosmet	10	9.8	0.087	0.87
POTATOES				
Chlorpropham	50	68.0	1.6	3.2
DDE ^{AG}	1	11.7	0.010	1.0
Thiabendazole	10	10.2	0.37	3.7

TABLE 2 Quantifiable Concentration Detected vs. Established Tolerances

AG Administrative Guidelines are not considered to be the same as Tolerances, but are sometimes used for pesticides for which there is not a registered use, but the pesticide is persistant in the environment.

NT Under 40CFR 180.315 there is no tolerance for methamidophos in green beans. However, 40CFR 180.108 specifies that for a <u>mixture</u> of acephate and its metabolite methamidophos there is a tolerance of 3 ppm of which <u>not more than</u> 1 ppm can be methamidophos, only if acephate is present.

1 These percentages are from Appendix 9. Only those pesticides detected in more than 10% (rounded) of the samples were included.

2 All detected pesticide residue concentrations that were below the Limit of Quantitation were <u>not</u> included in this calculation. The actual mean, when calculated, will require the inclusion of residue values below quantitative limits and estimates of all nondetected values. This will result in significantly lower mean concentrations.

STATE SAMPLING COLLECTION DATES

JANUARY 1992

MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
		1	2	3
6 CA BANANA, 14 NY BANANA, 1 WA GRAPEFRUIT, 5 TX POTATOES, 9	7 FL BANANA, 8 NY BANANA, 8 MI LETTUCE, 7 CA POTATOES, 3	8 MI BANANA, 7 TX GRAPES, 8 WA LETTUCE, 5 CA POTATOES, 11	9 FL APPLES, 8	10
13 WA APPLES, 5 CA LETTUCE, 14 NY LETTUCE, 8 TX LETTUCE, 9	14 CA GRAPEFRUIT, 3 FL ORANGES, 8	15 CA GRAPEFRUIT, 11 NY GRAPEFRUIT, 7 WA GRAPES, 5 FL LETTUCE, 8 TX ORANGES, 9	16 NY GRAPEFRUIT, 2	17
20	21 NY APPLES, 8 WA BANANA, 5 TX GRAPEFRUIT, 9	22 CA APPLES, 14 NY APPLES, 1 TX APPLES, 9 MI GRAPEFRUIT, 7 NY ORANGES, 9 FL POTATOES, 8 WA POTATOES, 5	23 MI POTATOES, 6	24
27 TX BANANA, 9 NY GRAPES, 9 CA ORANGES, 14 WA ORANGES, 5	28 CA GRAPES, 4	29 MI APPLES, 6 CA GRAPES, 10 FL GRAPES, 7 MI ORANGES, 7 NY POTATOES, 9	30 MI APPLES, 1 FL GRAPEFRUIT, 8 FL GRAPES, 1 MI GRAPES, 7	31 9279 1 of 6

Page 1 of 6

TOTAL NUMBER OF SAMPLES: 361 TOTAL OF 7 COMMODITIES

STATE SAMPLING COLLECTION DATES

FEBRUARY 1992

NY GRAPEFRUIT, 9	TUESDAY 4 MI BANANA, 7 TX CELERY, 9	WEDNESDAY 5 FL LETTUCE, 8 TX PEACHES, 7 WA POTATOES, 5	THURSDAY 6 FL CELERY, 8 MI ORANGES, 7 TX PEACHES, 1	FRIDAY 7
NY GRAPEFRUIT, 9 10		TX PEACHES, 7	MI ORANGES, 7	
NY BANANA, 9 WA BANANA, 5 TX GREEN BEANS, 9 CA GRAPEFRUIT, 14	11 CA BANANA, 5 WA CELERY, 5 FL GREEN BEANS, 8 FL GRAPEFRUIT, 8 MI POTATOES, 7 TX POTATOES, 9	12 TX GRAPES, 9 WA ORANGES, 5	13 NY CELERY, 9 MI GREEN BEANS, 7 CA LETTUCE, 8 CA PEACHES, 11 FL POTATOES, 8	14 CA LETTUCE, 6
	18 MI APPLES, 7 NY APPLES, 9 FL GRAPES, 8 TX LETTUCE, 9 WA LETTUCE, 5 CA PEACHES, 3 MI PEACHES, 6	19 FL APPLES, 8 CA CELERY, 12 WA GRAPES, 5 CA ORANGES, 14 TX ORANGES, 9 NY POTATOES, 9	20 CA CELERY, 2 NY GREEN BEANS, 8 MI GRAPES, 7	21
24	25	26	27	28
CA APPLES, 9 TX GRAPEFRUIT, 9 WA GRAPEFRUIT, 5 NY GRAPES, 9 MI LETTUCE, 6 CA POTATOES, 14	CA APPLES, 5 TX APPLES, 9 TX BANANA, 1 MI CELERY, 7 MI LETTUCE, 1 NY LETTUCE, 9	FL BANANA, 8 FL BANANA, 8 TX BANANA, 8 NY GREEN BEANS, 1 WA GREEN BEANS, 4 MI GRAPEFRUIT, 7 CA GRAPES, 14 NY ORANGES, 9 FL PEACHES, 8	NY PEACHES, 9	

Page 2 of 6

TOTAL NUMBER OF SAMPLES: 503 TOTAL OF 10 COMMODITIES

STATE SAMPLING COLLECTION DATES

MARCH 1992

2 3 4 5 6 YA PPLES, 9 FL APPLES, 8 GREEN BEANS, 14 MI CELERY, 7 6 CA CELERY, 7 CA GELERY, 7 TX CELERY, 7 FL GREEN BEANS, 4 TX PL GRAPERUIT, 8 6 9 TX CELERY, 7 CA APPLES, 7 TX CELERY, 7 7 6 13 9 10 11 CA APPLES, 7 NY BANANA, 9 NY GRAPES, 8 NY GREEN BEANS, 4 9 10 CA APPLES, 7 FL BANANA, 8 MI BANANA, 1 NY BANANA, 9 NY GREEN BEANS, 1 NY GREEN B	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
MI APPLES, 7 NY GREEN BEANS, 8 NY GRAPES AS AS AS APPLES, 7 PL BANANA, 8 MI BANANA, 1 MI BANANA, 1 MI BANANA, 1 MI BANANA, 1 MI BANANA, 1 MI BANANA, 1 MI LETTUCE, 5 MI LETTUCE, 2 NY PEACHES, 2 NY PE	NY APPLES, 9 CA CELERY, 7 CA LETTUCE, 14	WA APPLES, 5 CA CELERY, 7 TX CELERY, 9	WA GREEN BEANS, 4	MI CELERY, 7 FL GRAPEFRUIT, 8 NY GRAPES, 9	
TX GRAPES, 9TX LETTUCE, 8FL CELERY, 8TX GRAPES, 7WA GRAPES, 5MI PEACHES, 1MI GRAPES, 7TX LETTUCE, 1FL ORANGES, 8TX ORANGES, 8TX ORANGES, 8TX ORANGES, 9WA POTATOES, 526232425TX BANANA, 9NY CELERY, 9MI GREEN BEANS, 1NY LETTUCE, 9MI GREEN BEANS, 6TX GRAPES, 14FL LETTUCE, 8CA GRAPES, 14FL LETTUCE, 8CA ORANGES, 9MI GREEN BEANS, 6TX GRAPEFRUIT, 7NY LETTUCE, 930CA BANANA, 7CA BANANA, 7MI GRAPERVIT, 6CA BANANA, 7	MI APPLES, 7 NY GREEN BEANS, 8 TX GREEN BEANS, 8	CA APPLES, 7 FL BANANA, 8 MI BANANA, 6 CA GRAPEFRUIT, 14 NY GRAPEFRUIT, 9 WA PEACHES, 4	CA APPLES, 7 MI BANANA, 1 MI LETTUCE, 5 WA LETTUCE, 5 MI ORANGES, 7	NY BANANA, 9 FL GRAPES, 8 MI LETTUCE, 2	
WA BANANA, 5 NY CELERY, 9 MI GREEN BEANS, 6 TX GRAPEFRUIT, 7TX APPLES, 9 MI GREEN BEANS, 1 NY LETTUCE, 9TX BANANA, 9 CA GRAPES, 14 FL LETTUCE, 8 CA ORANGES, 14 NY ORANGES, 9 FL PEACHES, 4 MI POTATOES, 7NY POTATOES, 930 CA BANANA, 7 WA CELERY, 5 MI GRAPEFRUIT, 631 CA BANANA, 7 CA POTATOES, 7S1 CA BANANA, 7 CA POTATOES, 7S1 CA BANANA, 7 CA POTATOES, 7		TX LETTUCE, 8	FL CELERY, 8 MI GRAPES, 7 TX LETTUCE, 1 FL ORANGES, 8 TX ORANGES, 9	19	TX GRAPEFRUIT, 2
CA BANANA, 7CA BANANA, 7WA CELERY, 5CA POTATOES, 7MI GRAPEFRUIT, 6	23 WA BANANA, 5 NY CELERY, 9 MI GREEN BEANS, 6 TX GRAPEFRUIT, 7	TX APPLES, 9 MI GREEN BEANS, 1	TX BANANA, 9 CA GRAPES, 14 FL LETTUCE, 8 CA ORANGES, 14 NY ORANGES, 9 FL PEACHES, 4		27
	CA BANANA, 7 WA CELERY, 5 MI GRAPEFRUIT, 6	CA BANANA, 7			

Page 3 of 6

STATE SAMPLING COLLECTION DATES

APRIL 1992

MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
		1 MI APPLES, 7 WA APPLES, 5 FL CELERY, 8 TX CELERY, 9	2 MI CELERY, 7 NY GRAPES, 9	3
6 CA APPLES, 14 CA GREEN BEANS, 12 TX GREEN BEANS, 1 WA LETTUCE, 5 CA ORANGES, 1	7 CA GREEN BEANS, 1 FL GREEN BEANS, 8 TX GREEN BEANS, 7 WA GRAPEFRUIT, 5 FL ORANGES, 8 NY ORANGES, 9	8 NY BANANA, 8 WA CELERY, 4 CA GREEN BEANS, 1 MI GRAPEFRUIT, 7 CA ORANGES, 13 TX POTATOES, 9	9 NY BANANA, 1 NY CELERY, 9 WA CELERY, 1 MI GRAPES, 7	10 FL BANANA, 8
13 CA BANANA, 4 NY GRAPEFRUIT, 9 TX GRAPES, 9 WA ORANGES, 5	14 CA BANANA, 10 MI BANANA, 7 WA BANANA, 5 TX LETTUCE, 9	15 WA GREEN BEANS, 4 FL LETTUCE, 7 TX ORANGES, 9 FL PEACHES, 2 CA POTATOES, 14	16 NY GREEN BEANS, 8 CA GRAPES, 14	17
20 NY APPLES, 7 NY GREEN BEANS, 1 CA GRAPEFRUIT, 7 TX GRAPEFRUIT, 8 WA POTATOES, 5	21 NY APPLES, 2 CA GRAPEFRUIT, 7 MI LETTUCE, 7 NY POTATOES, 9	22 FL APPLES, 8 TX APPLES, 9 CA CELERY, 14 FL GRAPEFRUIT, 8 MI ORANGES, 7 WA PEACHES, 2	23 MI GREEN BEANS, 6	24 FL GRAPES, 8
27 TX BANANA, 8 WA GRAPES, 5 NY LETTUCE, 9 CA PEACHES, 12 MI POTATOES, 7	28 TX BANANA, 1 CA LETTUCE, 7 FL POTATOES, 7	29 CA LETTUCE, 7 NY PEACHES, 5	30 NY PEACHES, 1	
				Page 4 of 6

Page 4 of 6

TOTAL NUMBER OF SAMPLES: 484 TOTAL OF 10 COMMODITIES

STATE SAMPLING COLLECTION DATES

MAY 1992

MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
				1
4 NY APPLES, 9 CA CELERY, 14 TX CELERY, 8 MI GREEN BEANS, 7 WA GREEN BEANS, 5 CA GRAPEFRUIT, 14	5 TX CELERY, 1 WA GRAPEFRUIT, 5 MI ORANGES, 7 FL PEACHES, 2 TX PEACHES, 5	6 TX GREEN BEANS, 9 CA LETTUCE, 7 WA POTATOES, 5	7 FL GREEN BEANS, 8 CA LETTUCE, 7 FL ORANGES, 8 CA POTATOES, 14	8
11 MI GRAPEFRUIT, 7 NY GRAPES, 1 TX GRAPES, 2 WA GRAPES, 5 NY POTATOES, 9 TX POTATOES, 9	12 FL APPLES, 7 NY CELERY, 9 WA CELERY, 4 CA GRAPES, 10 TX GRAPES, 5 FL POTATOES, 8 MI POTATOES, 7	13 WA BANANA, 5 MI LETTUCE, 7 NY LETTUCE, 8 TX LETTUCE, 9 CA ORANGES, 7 CA PEACHES, 4 MI PEACHES, 7	14 FL LETTUCE, 1 CA ORANGES, 7 CA PEACHES, 7 NY PEACHES, 9	15 FL LETTUCE, 7 NY LETTUCE, 1
18 NY GRAPES, 8 TX ORANGES, 9 WA PEACHES, 5	19 CA APPLES, 14 WA APPLES, 5 CA BANANA, 14 NY GREEN BEANS, 9 TX GRAPEFRUIT, 9	20 TX APPLES, 9 FL BANANA, 8 FL GRAPEFRUIT, 8 MI GRAPES, 7 WA LETTUCE, 5	21 NY BANANA, 9 MI CELERY, 7	22
25	26 MI APPLES, 7 TX BANANA, 9 NY ORANGES, 9 WA ORANGES, 5	27 FL CELERY, 8 CA GREEN BEANS, 14	28 MI BANANA, 7 NY GRAPEFRUIT, 9 FL GRAPES, 7	29
				Page 5 of 6

Page 5 of 6

TOTAL NUMBER OF SAMPLES: 498 TOTAL OF 10 COMMODITIES

STATE SAMPLING COLLECTION DATES

JUNE 1992

Intervention Part of Dispont Part of Dispont Part of Dispont Part of Dispont MI APPLES, 6 Yn CELERY, 9 Structure Structure	MONDAY	TUESDAY	WEDNESDA Y	THURSDAY	FRIDAY
MI APLES, 6 IN CELERY, 9 TX CELERY, 9 CA APPLES, 1 MI GRAPES, 7 CA LETTUCE, 7 CA LETTUCE, 7 CA LETTUCE, 7 CA ORANGES, 3 CA LETTUCE, 7 CA DRANGES, 7 MI GRAPES, 7 NY ORANGES, 5 CA ORANGES, 7 CA ORANGES, 7 CA ORANGES, 7 NY ORANGES, 7 FL LETTUCE, 8 CA ORANGES, 7 CA ORANGES, 7 NY ORANGES, 7 TX APPLES, 1 TX APPLES, 7 NY BEACHES, 5 NY ORANGES, 7 TX APPLES, 1 PL OCENTY, 5 CA ORANGES, 7 NY ORAPER, UTT, 9 YA GRAPES, 8 NI ORANA, 13 NA ORAPERS, 5 NY ORAPER, 7 TX APPLES, 8 PL OELERY, 8 NG ORAPES, 8 MI PEACHES, 7 TX APPLES, 8 TX ORAPES, 6 NY ORAPES, 8 NG ORAPES, 7 NY ORAPES, 5 TX ORAPES, 6 NY ORAPES, 8 NG ORAPES, 7 NY ORAPES, 5 TX ORAPES, 6 NY ORAPES, 7 NY ORAPES, 9 AGRAPES, 9 NA ORAPES, 5 NY A ORANGES, 7 NY ORENDES DEANS, 9 CA GRAPES, 7 CA ORAPES, 7 NY ORAPES, 7 NY ORENDES DEANS, 9 CA GRAPES, 7 NY APPLES, 7 TX ORAPES, 7 NY ORENDES					the second s
TX APPLES, 7 NY GRAPERUIT, 9 WA LETTUCE, 5 MI PEACHES, 7TX APPLES, 1 CA BANANA, 13 NY GRAPES, 5 TX LETTUCE, 9FL CELERY, 8 FL GREEN BEANS, 8 WG GRAPES, 6MI BANANA, 7 FL GREEN BEANS, 8 WG GRAPERUIT, 7 CA POTATOES, 14WA PEACHES, 215 TX BANANA, 9 MI GREEN BEANS, 7 NY GRAEN BEANS, 7 NY GRAEN BEANS, 7 NY GRAEN BEANS, 7 NY GRAEN BEANS, 7 WA ORANGES, 516 FL APPLES, 8 CA GRAPES, 2 WA ORANGES, 517 CA CA GREEN BEANS, 1418 MI POTATOES, 1419 FL PEACHES, 722 WA APEACHES, 5 MI CELERY, 7 CA GRAPES, 5 WA APEACHES, 5 NY BANANA, 9 MI CELERY, 7 CA GRAPES, 624 FL BANANA, 5 CA GRAPES, 2 WA ORANGES, 524 FL BANANA, 6 CA GRAPES, 7 TX ORANGES, 225 FL BANANA, 6 CA CELERY, 7 FL GRAPES, 8 FL ORANGES, 7 NY POTATOES, 926 TX GRAPEFRUIT, 9 FL GRAPERUIT, 9 FL GRAPES, 12930 MI LETTUCE, 730	TX GREEN BEANS, 9 CA ORANGES, 3 NY ORANGES, 9	NY CELERY, 9 WA GRAPEFRUIT, 5 CA LETTUCE, 7 FL LETTUCE, 8 CA ORANGES, 9 MI ORANGES, 7 CA PEACHES, 1	TX CELERY, 9 WA CELERY, 5 CA LETTUCE, 7	CA APPLES, 14 MI GRAPES, 7 NY LETTUCE, 9 CA PEACHES, 11	2
TX BANANA, 9 MI GREEN BEANS, 7 NY GREEN BEANS, 9 CA GRAPES, 9 WA PEACHES, 3FL APPLES, 8 CA GRAPES, 2 WA ORANGES, 5CA GREEN BEANS, 14MI POTATOES, 7 TX POTATOES, 9FL PEACHES, 722 WA APPLES, 5 NY BANANA, 9 MI CELER Y, 7 CA GRAPEFRUIT, 7 TX ORANGES, 624 FL BANANA, 6 CA CELER Y, 7 FL GRAPES, 8 FL ORANGES, 7 NY POTATOES, 925 NY APPLES, 9 FL BANANA, 2 CA CELER Y, 7 FL GRAPES, 8 FL ORANGES, 126 TX GRAPEFRUIT, 92930 MI LETTUCE, 730 MI LETTUCE, 730	TX APPLES, 7 NY GRAPEFRUIT, 9 WA LETTUCE, 5	TX APPLES, 1 CA BANANA, 13 NY GRAPES, 8 WA GRAPES, 5	FL CELERY, 8 FL GREEN BEANS, 8 WA GREEN BEANS, 3	MI BANANA, 7 FL GRAPEFRUIT, 8 MI GRAPEFRUIT, 7	
WA APPLES, 5 NY BANANA, 9 MI CELER Y, 7 CA GRAPEFRUIT, 7 TX ORANGES, 2WA BANANA, 5 CA GRAPEFRUIT, 7 TX ORANGES, 2FL BANANA, 6 CA CELER Y, 7 FL GRAPES, 8 FL ORANGES, 7 NY POTATOES, 9NY APPLES, 9 FL BANANA, 2 CA CELER Y, 7 FL ORANGES, 1TX GRAPEFRUIT, 92930 MI LETTUCE, 730 MI LETTUCE, 7230 MI LETTUCE, 7230 MI LETTUCE, 730 MI LETTUCE, 730 	TX BANANA, 9 MI GREEN BEANS, 7 NY GREEN BEANS, 9 CA GRAPES, 9	FL APPLES, 8 CA GRAPES, 2	•	MI POTATOES, 7	
MI LETTUCE, 7	WA APPLES, 5 NY BANANA, 9 MI CELERY, 7 CA GRAPEFRUIT, 7	WA BANANA, 5 CA GRAPEFRUIT, 7	FL BANANA, 6 CA CELERY, 7 FL GRAPES, 8 FL ORANGES, 7	NY APPLES, 9 FL BANANA, 2 CA CELERY, 7	
	29	MI LETTUCE, 7			

Page 6 of 6

SAMPLING REGIONS BY STATE

	NUMBER	PERCENT	NUMBER	PERCENT
REGION	OF SITES	SITES	OF SAMPLES	SAMPLES
CALIFORNIA				
AVENAL	1	0.4%	5	0.7%
BAKERSFIELD	3	1.1%	14	1.8%
BYRON	1	0.4%	0	
CHICO	1	0.4%	4	0.5%
COLTON	1	0.4%	1	0.1%
DELANO	1	0.4%	0	0.0%
EAST BAY (OAKLAND)	31	10.9%	139	18.1%
FAIRFIELD	2	0.7%	2	0.3%
FRESNO	10	3.5%	35	4.6%
LAKETAHOE	1	0.4%	2	0.3%
LOS ANGELES BASIN	119	41.9%	281	36.5%
MADERA	1	0.4%	5	0.7%
MERCED	1	0.4%	7	0.9%
MONTEREY BAY AREA	4	1.4%	12	1.6%
OXNARD AREA	2	0.7%	0	0.0%
REDDING	2	0.7%	4	0.5%
SACRAMENTO	28	9.9%	58	7.5%
SAN DIEGO AREA	11	3.9%	19	2.5%
SAN JOSE	1	0.4%	3	0.4%
SAN LUIS OBISPO AREA	2	0.7%	1	0.1%
STOCKTON AREA	6	2.1%	14	1.8%
ИКІАН	1	0.4%	2	0.3%
VISALIA	1	0.4%	4	0.5%
WEST BAY (SAN FRAN)	52	18.3%	155	20.2%
YUBA CITY AREA	1	0.4%	2	0.3%
TOTAL:	284	100:0%	769	100.0%
				1
FLOBIDA				
FLORIDA GREEN COVE SPRINGS	1	4.2%	25	5 7%
GREEN COVE SPRINGS	1	4.2% 20.8%	25 105	5.7%
GREEN COVE SPRINGS JACKSONVILLE	1 5 1	20.8%	105	24.1%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND	1 5 1 3	20.8% 4.2%	105 17	24.1% 3.9%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI	1 5 1 3 2	20.8% 4.2% 12.5%	105 17 24	24.1% 3.9% 5.5%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO	2	20.8% 4.2% 12.5% 8.3%	105 17 24 48	24.1% 3.9% 5.5% 11.0%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO PLANT CITY	2	20.8% 4.2% 12.5% 8.3% 8.3%	105 17 24 48 23	24.1% 3.9% 5.5% 11.0% 5.3%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO PLANT CITY POMPANO BEACH	2 2 5	20.8% 4.2% 12.5% 8.3% 8.3% 20.8%	105 17 24 48 23 87	24.1% 3.9% 5.5% 11.0% 5.3% 20.0%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO PLANT CITY	2 2 5 5	20.8% 4.2% 12.5% 8.3% 8.3%	105 17 24 48 23	24.1% 3.9% 5.5% 11.0% 5.3%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO PLANT CITY POMPANO BEACH TAMPA/ST. PETERSBURG	2 2 5	20.8% 4.2% 12.5% 8.3% 8.3% 20.8% 20.8%	105 17 24 48 23 87 106	24.1% 3.9% 5.5% 11.0% 5.3% 20.0% 24.4%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO PLANT CITY POMPANO BEACH TAMPA/ST. PETERSBURG	2 2 5 5	20.8% 4.2% 12.5% 8.3% 8.3% 20.8% 20.8%	105 17 24 48 23 87 106	24.1% 3.9% 5.5% 11.0% 5.3% 20.0% 24.4%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO PLANT CITY POMPANO BEACH TAMPA/ST. PETERSBURG TOTAL: MICHIGAN ANN ARBOR AREA	2 2 5 5	20.8% 4.2% 12.5% 8.3% 8.3% 20.8% 20.8%	105 17 24 48 23 87 106	24.1% 3.9% 5.5% 11.0% 5.3% 20.0% 24.4%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO PLANT CITY POMPANO BEACH TAMPA/ST. PETERSBURG TOTAL: MICHIGAN ANN ARBOR AREA BATTLE CREEK	2 2 5 5	20.8% 4.2% 12.5% 8.3% 8.3% 20.8% 20.8% 20.8%	105 17 24 48 23 87 106 435	24.1% 3.9% 5.5% 11.0% 5.3% 20.0% 24.4% 100:0%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO PLANT CITY POMPANO BEACH TAMPA/ST. PETERSBURG TOTAL: MICHIGAN ANN ARBOR AREA BATTLE CREEK BAY CITY AREA	2 2 5 5	20.8% 4.2% 12.5% 8.3% 8.3% 20.8% 20.8% 100.0% 8.5%	105 17 24 48 23 87 106 435 38	24.1% 3.9% 5.5% 11.0% 5.3% 20.0% 24.4% 100:0% 9.8%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO PLANT CITY POMPANO BEACH TAMPA/ST. PETERSBURG TOTAL: MICHIGAN ANN ARBOR AREA BATTLE CREEK BAY CITY AREA BRIGHTON	2 2 5 5	20.8% 4.2% 12.5% 8.3% 8.3% 20.8% 20.8% 20.8% 20.8% 20.8% 20.8% 20.8%	105 17 24 48 23 87 106 435 38 12	24.1% 3.9% 5.5% 11.0% 5.3% 20.0% 24.4% 100:0% 9.8% 3.1%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO PLANT CITY POMPANO BEACH TAMPA/ST. PETERSBURG TOTAL: MICHIGAN ANN ARBOR AREA BATTLE CREEK BAY CITY AREA	2 2 5 5	20.8% 4.2% 12.5% 8.3% 20.8% 20.8% 100.0% 8.5% 2.1% 2.1%	105 17 24 48 23 87 106 435 38 12 9	24.1% 3.9% 5.5% 11.0% 5.3% 20.0% 24.4% 100:0% 9.8% 3.1% 2.3%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO PLANT CITY POMPANO BEACH TAMPA/ST. PETERSBURG TOTAL: MICHIGAN ANN ARBOR AREA BATTLE CREEK BAY CITY AREA BRIGHTON CADILLAC DECATUR	2 5 5 24 24 4 1 1 1 1 1 1	20.8% 4.2% 12.5% 8.3% 20.8% 20.8% 20.8% 100.0% 8.5% 2.1% 2.1% 2.1% 2.1% 2.1%	105 17 24 48 23 87 106 435 38 12 9 12 18 7	24.1% 3.9% 5.5% 11.0% 5.3% 20.0% 24.4% 100:0% 9.8% 3.1% 2.3% 3.1% 4.7% 1.8%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO PLANT CITY POMPANO BEACH TAMPA/ST. PETERSBURG TOTAL: MICHIGAN ANN ARBOR AREA BATTLE CREEK BAY CITY AREA BRIGHTON CADILLAC DECATUR DETROIT AREA	2 2 5 5	20.8% 4.2% 12.5% 8.3% 20.8% 20.8% 100.0% 8.5% 2.1% 2.1% 2.1% 2.1% 2.1% 36.2%	105 17 24 48 23 87 106 435 38 12 9 12 18 7 129	24.1% 3.9% 5.5% 11.0% 5.3% 20.0% 24.4% 100:0% 9.8% 3.1% 2.3% 3.1% 4.7% 1.8% 33.4%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO PLANT CITY POMPANO BEACH TAMPA/ST. PETERSBURG TOTAL: MICHIGAN ANN ARBOR AREA BATTLE CREEK BAY CITY AREA BRIGHTON CADILLAC DECATUR DETROIT AREA FLINT	2 2 5 24 24 4 1 1 1 1 1 1 1 1 7 2	20.8% 4.2% 12.5% 8.3% 20.8% 20	105 17 24 48 23 87 106 435 38 12 9 12 18 7 129 10	24.1% 3.9% 5.5% 11.0% 5.3% 20.0% 24.4% 100:0% 9.8% 3.1% 2.3% 3.1% 4.7% 1.8% 33.4% 2.6%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO PLANT CITY POMPANO BEACH TAMPA/ST. PETERSBURG TOTAL: MICHIGAN ANN ARBOR AREA BATTLE CREEK BAY CITY AREA BRIGHTON CADILLAC DECATUR DETROIT AREA FLINT GRAND RAPIDS	2 2 5 24 24 4 1 1 1 1 1 1 1 1 1 1 7	20.8% 4.2% 12.5% 8.3% 20.8% 20.1% 20	105 17 24 48 23 87 106 435 38 12 9 12 18 7 129 10 65	24.1% 3.9% 5.5% 11.0% 5.3% 20.0% 24.4% 100:0% 9.8% 3.1% 2.3% 3.1% 4.7% 1.8% 33.4% 2.6% 16.8%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO PLANT CITY POMPANO BEACH TAMPA/ST. PETERSBURG TOTAL: MICHIGAN ANN ARBOR AREA BATTLE CREEK BAY CITY AREA BRIGHTON CADILLAC DECATUR DETROIT AREA FLINT GRAND RAPIDS KALAMAZOO	2 2 5 5 24 4 1 1 1 1 1 1 1 1 1 7 2 7 1	20.8% 4.2% 12.5% 8.3% 20.8% 20.8% 20.8% 100.0% 8.5% 2.1% 2.1% 2.1% 2.1% 2.1% 36.2% 4.3% 14.9% 2.1%	105 17 24 48 23 87 106 435 38 12 9 12 18 7 129 10 65 6	24.1% 3.9% 5.5% 11.0% 5.3% 20.0% 24.4% 100:0% 9.8% 3.1% 2.3% 3.1% 4.7% 1.8% 33.4% 2.6% 16.8% 1.6%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO PLANT CITY POMPANO BEACH TAMPA/ST. PETERSBURG TOTAL MICHIGAN ANN ARBOR AREA BATTLE CREEK BAY CITY AREA BRIGHTON CADILLAC DECATUR DETROIT AREA FLINT GRAND RAPIDS KALAMAZOO LANSING	2 2 5 24 24 4 1 1 1 1 1 1 1 1 7 2	20.8% 4.2% 12.5% 8.3% 20.8% 20.8% 20.8% 100.0% 8.5% 2.1% 2.1% 2.1% 2.1% 2.1% 2.1% 36.2% 4.3% 14.9% 2.1% 12.8%	105 17 24 48 23 87 106 435 38 12 9 12 18 7 129 10 65 6 50	24.1% 3.9% 5.5% 11.0% 5.3% 20.0% 24.4% 100.0% 9.8% 3.1% 2.3% 3.1% 4.7% 1.8% 33.4% 2.6% 16.8% 1.6% 13.0%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO PLANT CITY POMPANO BEACH TAMPA/ST. PETERSBURG TOTAL: MICHIGAN ANN ARBOR AREA BATTLE CREEK BAY CITY AREA BRIGHTON CADILLAC DECATUR DETROIT AREA FLINT GRAND RAPIDS KALAMAZOO LANSING NILES	2 2 5 5 24 4 1 1 1 1 1 1 1 1 1 7 2 7 1	20.8% 4.2% 12.5% 8.3% 20.8% 20	105 17 24 48 23 87 106 435 38 12 9 12 18 7 129 10 65 6 50 12	24.1% 3.9% 5.5% 11.0% 5.3% 20.0% 24.4% 100:0% 9.8% 3.1% 2.3% 3.1% 4.7% 1.8% 33.4% 2.6% 16.8% 1.6% 13.0% 3.1%
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO PLANT CITY POMPANO BEACH TAMPA/ST. PETERSBURG TOTAL MICHIGAN ANN ARBOR AREA BATTLE CREEK BAY CITY AREA BRIGHTON CADILLAC DECATUR DETROIT AREA FLINT GRAND RAPIDS KALAMAZOO LANSING NILES SAGINAW	2 2 5 5 24 4 1 1 1 1 1 1 1 1 1 7 2 7 1	20.8% 4.2% 12.5% 8.3% 20.8% 20	105 17 24 48 23 87 106 435 38 12 9 12 18 7 129 10 65 6 50 12 12	$\begin{array}{c} 24.1\% \\ 3.9\% \\ 5.5\% \\ 11.0\% \\ 5.3\% \\ 20.0\% \\ 24.4\% \\ \hline 100.0\% \\ \end{array}$
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO PLANT CITY POMPANO BEACH TAMPA/ST. PETERSBURG TOTAL MICHIGAN ANN ARBOR AREA BATTLE CREEK BAY CITY AREA BRIGHTON CADILLAC DECATUR DETROIT AREA FLINT GRAND RAPIDS KALAMAZOO LANSING NILES SAGINAW STANDISH	2 2 5 5 24 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20.8% 4.2% 12.5% 8.3% 20.8% 20	105 17 24 48 23 87 106 435 38 12 9 12 18 7 129 10 65 6 50 12 12 12 6	$\begin{array}{c} 24.1\%\\ 3.9\%\\ 5.5\%\\ 11.0\%\\ 5.3\%\\ 20.0\%\\ 24.4\%\\ \hline 100.0\%\\ \hline \\ 9.8\%\\ 3.1\%\\ 2.3\%\\ 3.1\%\\ 4.7\%\\ 1.8\%\\ 33.4\%\\ 2.6\%\\ 16.8\%\\ 1.6\%\\ 13.0\%\\ 3.1\%\\ 3.1\%\\ 1.6\%\\ \hline \end{array}$
GREEN COVE SPRINGS JACKSONVILLE LAKELAND MIAMI ORLANDO PLANT CITY POMPANO BEACH TAMPA/ST. PETERSBURG TOTAL MICHIGAN ANN ARBOR AREA BATTLE CREEK BAY CITY AREA BRIGHTON CADILLAC DECATUR DETROIT AREA FLINT GRAND RAPIDS KALAMAZOO LANSING NILES SAGINAW	2 2 5 5 24 4 1 1 1 1 1 1 1 1 1 7 2 7 1	20.8% 4.2% 12.5% 8.3% 20.8% 20	105 17 24 48 23 87 106 435 38 12 9 12 18 7 129 10 65 6 50 12 12	$\begin{array}{c} 24.1\% \\ 3.9\% \\ 5.5\% \\ 11.0\% \\ 5.3\% \\ 20.0\% \\ 24.4\% \\ \hline 100.0\% \\ \end{array}$

Page 1 of 2

SAMPLING REGIONS BY STATE

REGION	NUMBER OF SITES	PERCENT	NUMBER OF SAMPLES	PERCENT SAMPLES
NEW YORK				
ALBANY	12	6.4%	60	11.8%
ALBION	1	0.5%	0	0.0%
BUFFALO	28	15.0%	78	15.4%
BYRON	1	0.5%	,0	0.0%
CANASTOTA	3	1.6%	3	0.6%
CASTILE	1	0.5%	0	0.0%
CHITTENANGO	2	1.1%	0	0.0%
HORSEHEADS	- 1	0.5%	4	0.8%
ITHACA	1	0.5%	5	1.0%
JAMESTOWN	4	2.1%	13	2.6%
LOCKPORT/BATAVIA	1	0.5%	1	0.2%
LONG ISLAND	12	6.4%	40	7.9%
MARION	2	1.1%	1	0.2%
NEW YORK CITY	80	42.8%	179	35.3%
NORWICH	1	0.5%	7	1.4%
ONTARIO	1	0.5%	0	0.0%
OSWEGO	3	1.6%	0	0.0%
PLATTSBURG AREA	1	0.5%	0	0.0%
ROCHESTER	9	4.8%	40	7.9%
SCHOHARIE	1	0.5%	1	0.2%
SOUTHEAST NEW YORK	13	7.0%	27	5.3%
SYRACUSE	8	4.3%	41	8.1%
WILLSBORO	1	0.5%	7	1.4%
TOTAL	187	100.0%	507	100.0%
TEXAS				
AMARILLO	1	3.1%	17	3.5%
BRENHAM	1	3.1%	22	4.5%
DALLAS/FORT WORTH	8	25.0%	139	28.5%
ELPASO	1	3.1%	20	4.1%
HOUSTON	8	25.0%	144	29.6%
LUBBOCK	2	6.3%	33	6.8%
LUFKIN	3	9.4%	17	3.5%
SAN ANTONIO	7	21.9%	75	15.4%
TYLER	1	3.1%	20	4.1%
TOTAL:	32	100.0%	487	100.0%
WASHINGTON				
WASHINGTON		77.00/	010	70.0%
SEATTLE/TACOMA SPOKANE	14	77.8%	219	79.6% 12.0%
YAKIMA	3	16.7%	33	
TANIMA TOTAL:	18	5.6% 100,0%	23 275	8.4%
	18	1.00.070	2/3	1.00.0 %
GRAND TOTAL:	592		2859	
				Page 2 of 2

Page 2 of 2

SAMPLE PROFILE BY ORIGIN (Domestic/Import)*

DTAL		58	0	1032	10	-	-	430	29	93	8	-	4	36	80	2	3	2	69	-	2	2	31	3	5	4	43	5		4	234	+	10	2140 Baca 1 of 0
PO TO		5	1	54	80	1	-	21	1	71	8	1		15	9	2	3	1	21		1	2	28			1	15	1			38		10	308
PC		-	1	73	1	1	1	e	13	1	1	1	1	-	1	1	1	1	1		1	1	1		က	1	4	1			1	1		66
00		8	1A	236		1	1	58		1		1	1	1A	1A	1	1	1	2A	1		1	1	1	1	1	3	1			1	I	1	310
LT		12	1	270	1	1	1	17	1	1	1	1	1	-	-	1	1	2	e	1	1	I	1	1	1	1		1		1	e	I	I	310
GR		-	1	40	-	1	1	0		1	1	I	1	1	1	1	1	1	1	1	1	I		1	1	1	1	1		1	1	1	1	44
GF		30	1	122	1	1	1	148	1	1		1	1	1A	1	1		1	1A	1	1		I	I	I	1	e	1			1A	I	I	306
GB			1	48	1	1	1	121	16	1		1	1	-	1		1	1	14	1	2	1	I	1	2	4	e	1			2	1	1	214
CE		1	1	179	1	1	1	60	1	1	1	1	1	2	1	1	1		-		1	1	1	1	1	1	14	1	-		1		1	256
BN		1	I	1	1	1	1	1	1	I	1	-	I	1	-	1	1	1	I	1	1	1	I	1	I	I	I	I		1		I	1	1
AP		1	1	10	-	-	1	1	1	22	1	1	4	16	-	1	1	1	30		1	1	e	3	1	1	1	5		4	191		1	293
STATE	States = 31	ARIZONA	ARKANSAS	CALIFORNIA	COLORADO	CONNECTICUT	DELAWARE	FLORIDA	GEORGIA	IDAHO	MAINE	MARYLAND	MASSACHUSETTS	MICHIGAN	MINNESOTA	MONTANA	NEVADA	NEW MEXICO	NEW YORK	NORTH CAROLINA	OHIO	OKLAHOMA	OREGON	PENNSYLVANIA	SOUTH CAROLINA	TENNESSEE	TEXAS	UTAH		VERMONT	WASHINGTON	WEST VIRGINIA	WISCONSIN	TOTAL

SAMPLE PROFILE BY ORIGIN (Domestic/Import)*

COUNTRY	A.P	BN	CE	GB	GF	GR	LT	00	PO	PO	TOTAL
Countries = 13											
ARGENTINA	-	1	1	1	1	1	1	1	1	1	
BAHAMAS	1	1	1	1	e	1	1	1			3
CANADA	5	1	I	1	1	1	1	1	1	-	9
CHILE	e	e	1	1	1	227	1	1	92	1	325
COLOMBIA	1	34	I	J	1	1	1	1	1	1	34
COSTA RICA	1	49	1	1	1	1	1	1	1	1	49
ECUADOR	1	102	1	1	1	1	1	1	1	1	102
GUATEMALA		24	1	1	1	1	1	1	1	1	24
HONDURAS	1	25	I	1	1	1	1	1	1	1	25
MEXICO	1	46	3	23	1	14	1	1	8	1	94
MOROCCO	1	1	1	1	1		1	-	1	1	-
NEW ZEALAND	2	1	1	1	1	1	1	I	2		6
VENEZUELA	1	4	1	1	1	1	1	1	1	1	4
TOTAL	16	287	S	23	e	241	1	+	102	-	677

Page 2 of 2	<u> </u>							ipany.	packing com	fied by grower or	*-Sample origin is identified by grower or packing company.
2859	309	205	311	310	297	310	238	259	311	309	GRAND TOTAL:
**42	1	4	1	1	12	1	-		24	1	Origin Not Available =
677	-	102	-	1	241	n	23	n	287	16	TOTAL
4	1	1	1	1	1	1	1	-	4	1	VENEZUELA
6	1	2	1	1	1	1	1	-	1	7	NEW ZEALAND
-	1	1	-	1	1	1	1			1	MOROCCO
94	1	8	1	1	14	1	23	e	46	1	MEXICO
C2	1	-	1	1	1	1	1		CZ	1	SANUUNION

- Sample origin is identified by grower or packing company.
 +* - 40 of the "Origin Not Available" samples are imported; 2 are domestic.
 A - Sample origin is identified by location of packing company only; samples are of domestic origin.

GR-GRAPES LT-LETTUCE OG-ORANGES PC-PEACHES PO-POTATOES AP-APPLES

BN-BANANAS CE-CELERY

GB-GREEN BEANS GF-GRAPEFRUIT

SAMPLING PERIOD AND DISTRIBUTION BY COMMODITY

COMMODITY	SAMPLING PERIOD	TOTAL # OF SAMPLES	IMPORT SAMPLE NUMBER PERCE	S NTAGE	DOMESTIC SA NUMBER PE	SAMPLES PERCENTAGE
			7		1	
APPLES	January	2,5	- 0	1.9%	51	98.1%
	March	25	2 +	3.8%	50	96.2%
	April	52	- 0	0.0%	52	100.0%
	May	51	5	9.8%	46	90.2%
	June	50	7	14.0%	43	86.0%
Total:		309	16	5.2%	293	94.8%
BANANAS	January	52	52	100.0%	0	%0.0
	February	52	52	100.0%	0	0.0%
	March	52	52	100.0%	0	0.0%
	April	52	52	100.0%	0	0.0%
	May	52	52	100.0%	0	0.0%
	June	51	51	100.0%	0	0.0%
Total:		311	311	100.0%	0	0.0%
CELERY*	February	52	0	0.0%	52	100.0%
	March	52		1.9%	51	98.1%
	April	52	N	3.8%	50	96.2%
	May	51	0	0.0%	51	100.0%
	June	52	0	0.0%	52	100.0%
Total:		259	3	1.2%	256	98.8%
					Page	Page 1 of 4

Page 1 of 4

SAMPLING PERIOD AND DISTRIBUTION BY COMMODITY

SAMPLES PERCENTAGE	75.7% 80.0% 91.8% 98.1%	89.9%	96.2% 100.0% 98.0%	100.0% 100.0% 100.0%	%0.66	17.6% 3.8% 1.9% 0.0%	8.9% 62.2% 14.8%
DOMESTIC S NUMBER P	28 40 45 51 50	214	50 52 50	51 52 52	307	0 0 0	4 28 44
TAGE	24.3% 20.0% 8.2% 1.9% 0.0%	10.1%	3.8% 0.0% 2.0%	0.0%	1.0%	82.4% 96.2% 98.1% 100.0%	91.1% 37.8% 85.2%
IMPORT SAMPLES NUMBER PERCEN	0 1 4 - 0	24	- 0 5	000	e	42 50 52	41 17 253
TOTAL # OF SAMPLES	37 50 49 52 50	238	52 52 51	51 52 52	310	51 52 52 52	45 45 297
SAMPLING PERIOD	February March April May June		January February March	April May June		January February March Abril	May June
COMMODITY	GREEN BEANS*	Total:	GRAPEFRUIT		Total:	GRAPES	Total:

Page 2 of 4

SAMPLING PERIOD AND DISTRIBUTION BY COMMODITY

COMMODITY	SAMPLING PERIOD	TOTAL # OF SAMPLES	IMPORT SAMPLES NUMBER PERCENTAGE		DOMESTIC SAMP NUMBER PERCI	SAMPLES PERCENTAGE
LETTUCE	January February	51 52	0 0	0.0%	51 52	100.0% 100.0%
	March April May	52 51 52 52	0000	0.0% %0.0 0.0%	52 51 52 52	100.0% 100.0% 100.0%
Total:		310		0.0%	310	100.0%
ORANGES	January	52	0,7	0.0%	52	100.0%
	March Anril	52 52		0.0%	52	98.1% 100.0%
	May	52 5		0.0%	52 52 54	100.0%
Total:		311		0.3%	310	89.7%
PEACHES*	February March	50 46	49 9 46 10	98.0% 100.0%	- 0	2.0% 0.0%
	April May June	48 39	0 - 0	40.9% 2.6% 0.0%	13 38 48	59.1% 97.4% 100.0%
Total:		205	105 5	51.2%	100	48.8%
					Parte 3 of 4	3 of 4

Page 3 of 4

SAMPLING PERIOD AND DISTRIBUTION BY COMMODITY

SAMPLES PERCENTAGE	100.0%	98.1%	100.0%	100.0%	100.0%	100.0%	99.7%	74.9%	Page 4 of 4
DOMESTIC SAMPLES NUMBER PERCENT/	51	51	51	51	52	52	308	2142	Page
TAGE	0.0%	1.9%	0.0%	0.0%	%0.0	0.0%	0.3%	25.1%	
IMPORT SAMPLES NUMBER PERCEN	0	-	0	0	0	0	-	717	
TOTAL # OF SAMPLES	51	52	51	51	52	52	309	2859	uary 1992
SAMPLING PERIOD	January	February	March	April	May	June		GRAND TOTAL:	* Commodity sampling was not implemented until February 1992
COMMODITY	POTATOES						Total:		* Commodity sampling we

EPA TARGETED PESTICIDES IN PDP - TOLERANCES (ppm) APPENDIX 5.

	40CFR				COMMODITIES**	ITIES**					
	180	AP	BN	CE	GB	GF	GR	LT	OG	PC	PO
COMPOUND*		9/91	9/91	2/92	2/92	8/91	5/91	5/91	8/91	2/92	5/91
2,4-D ^{B,C}	.142	5	NT	NT	TN	5	0.5	NT	5	.2	0.2
ACEPHATE (11/91)	.108	NT	NT	10 ^(E)	3 ^(E)	NT	NT	10 ^(E)	NT	NT	NT
ATRAZINE (3/92)	.220	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BENOMYL ^A (5/92)	.294	7.0	0.2	3.0	2.0	10.0	10.0	NT	10.0	15.0	NT
BROMOXYNIL ⁶	.324	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
CHLORPYRIFOS (5/91)	.342	1.5	0.05	NT	0.05	1.0	0.5 ^(R1)	NT	1.0	0.05	NT
DICLORAN (5/91)	.200	NT	NT	15	20	NT	10	10	NT	20	0.25
DICOFOL (10/91)	.163	5	LΝ	NT	5	10	5	NT	10	10	NT
HCB (5/91) ^H (Hexachlorobenzene)	.291	NT	NT	NT	NT	ΤN	NT	NT	NT	NT	NT
IPRODIONE (5/91)	.399	NT	NT	NT ⁽¹⁸⁾	2.0	NT	60.0	25.0	NT	20.0	NT
LINDANE ^{AG} (5/91)	.133	1	NT	1	0.5 ^{AG}	0.5 ^{AG}	1	3	0.5 ^{AG}	1	0.5 ^{AG}
METHAMIDOPHOS(11/91)	.315	NT	NT	1 (R2,F)	(a)LN	NT	NT	1	NT	NT	.1 ^(N)
METHOXYCHLOR (5/91)	.120	14	NT	NT	14	NT	14	10	NT	14	1
PCB ^H (3/92) (Pentachlorobenzene)	.291	ΤN	0	NT	0	NT	TN	NT	NT	NT	0
PCNB (5/91) (Quintozene)	.291 .319	NT	0.1 ⁽¹⁾	NT	0.1 ^(f)	NT	ΤN	NT	NT	ΝΤ	0.1 ^(f)
PERMETHRINS (5/91)	.378	0.05	NT	5.0	NT	NT	TN	20.0	NT	5.0	0.05

OTHER PESTICIDES IN PDP - TOLERANCES (ppm) APPENDIX 6.

						COMMODITIES**	ITTES**				
COMPOUND@	40CFR 180	AP	BN*	CE	GB	GF	GR	LT	OG	PC	PO
Anilazine (Dyrene)	.158	NT	ΝΤ	10	NT	NT	ΝΤ	NT	NT	NT	1
Azinphos-Methyl (Guthion)	.154	2.0	NT	2.0	2.0	2.0	5.0	NT	2.0	2.0	0.3
Captan	.103	25	NT	50	25 ⁽¹⁾	NT	50	100	NT	50	25 ⁰⁾
Carbaryl	.169	NT	10	10	10	10	10	10	10	10	0.2 ^(N)
Chlorpropham (CIPC)	.181	NT	NT	NT	$0.3^{(l)}$	NT	NT	NT	ΝT	NT	50
Chlorothalonil	.275	NT	0.05	15	S	NT	NT	NT	NT	0.5	0.1
Cypermethrin	.418	NT	NT	LΝ	NT	NT	NT	10.0 ^(T-2)	NT	NT	NT
DDT - TDE - DDE ^{(See} also AG listing)	.147		TN	1	1				-	-	-
Dacthal (DCPA)	.185	NT	NT	NT	2	NT	NT	2	NT	NT	2
Diazinon	.153	0.5	0.1	0.7	0.5	0.7	0.75	0.7	0.7	0.7	0.1
Dichlorvos ^D (DDVP)	.235	NT	TN	NT	NT	NT	NT	1^	NT	NT	NT
Dimethoate	.204	2	NT	5	2	2	1	2	2	ΝΤ	0.2
Diphenylamine	.190	10	NT	NT	NT	NT	NT	NT	NT	NT	NT
Disulfoton	.183	NT	NT	NT	0.75	NT	NT	0.75	NT	NT	0.75
Endosulfans	.182	2.0	NT	2.0	2.0	NT	2.0	2.0	NT	2.0	0.2 ^(N)
Ethion	.173	2.0	NT	NT	2.0	2.0	2.0	NT	2.0	1.0	ΤN
Ethoprop	.262	NT	0.02 ^(N)	NT	0.02 ^(N)	NT	NT	NT	NT	NT	0.02 ^(N)
Ethyl Parathion (Parathion)	.121	1	NT	1	1	1	1	1	1	1	0.1 ^(N)

Page 1 of 3

APPENDIX 6. OTE

OTHER PESTICIDES IN PDP - TOLERANCES (ppm)

						COMMODITIES**	ITTES**				
COMPOUND@	40CFR 180	AP	BN*	GF	GR	GF	GR	LT	OG	PC	PO
Fenamiphos	.349	0.25	0.10	NT	NT	0.60	0.10	NT	09.0	0.25	NT
Imazalil	.413	NT	0.2	NT	NT	10	NT	NT	10	NT	NT
Malathion	.111	Å	NT	8	ε.	8	8	8	ů Ď	∞	8
Methidathion	.298	.05	NT	NT	NT	2.0	NT	NT	2.0	0.05 ^(N)	0.2
Methomyl ^B	.253	1	ΤN	3	2	2	5	S	2	5	.2 ^(N)
Methyl Parathion	.121	1	ΝT	1	1	1	1	1	1	1	0.100
Mevinphos	.157	0.5	NT	1.0	0.25	0.2	0.5	0.5	0.2	1.0	0.25
Myclobutanil	.443	0.5	NT	NT	NT	NT	1.0	NT	NT	2.0 ^(T-3)	NT
Naled ^c	.215	NT	NT	З	0.5	ю	0.5	3	3	0.5	NT
Omethoate	.204	2	ΤN	2	2	2	1	2	2	LN	0.2
Parathion	.121	1	NT	1	1	1	1	1	1	1	0.100
Phosalone	.263	10	NT	NT	LN	3.0	10.0	NT	3.0	15.0	0.1 ^(N)
Phosmet	.261	10	NT	NT	NT	5	10	NT	5	10	0.1
Propargite	.259	3	NT	NT	20	S	10	NT	S	7	0.1
Thiabendazole	.242	10	0.4	NT	NT	10	10	NT	10	NT	10
Vinclozolin	.380	NT	NT	NT	NT	NT	6.0	10.0	NT	25.0	NT
ADMINISTRATIVE GUIDELINES:	IDELINES:										
DDT - TDE - DDE	.147	0.1	NG	0.5	0.2	0.1	0.05	0.5	0.1	0.2	1

(mdd)
DIX 6. OTHER PESTICIDES IN PDP - TOLERANCES (ppm)
APPENDIX 6.

parenthesis.
in
shown
name
Other common name shown in parenthesis.
e Ot

CD- green hears	PC= peaches	A	
•	CE= celery		
Other common name snown in parameters Tolerances are for edible portions only	AP= apples BN= bananas	GR = grapes LT = lettuce	All Tolerances are in parts per million.
8 *	* *		

GF= grapefruit PO= potatoes

Residues expressed as naled.

This is a combined tolerance of naled and its breakdown product dichlorvos (DDVP). Tolerance for naled may be used even if only DDVP is present Residues detected may include residues resulting from degradation of thiodicarb to methomyl.

C B A

since naled breaks down quickly.

See naled

AGs are sometimes used for pesticides for which there is not a registered use, but the pesticide is persistent in the Administrative guidelines. environment (e.g., DDT). DAG

Interim tolerance.

Temporary tolerance.

T-2 expires 7/1/93. I T-2 N-3 N

T-3 expires 10/1/94.

Negligible Residue Tolerance.

EPA TARGETED PESTICIDES IN PDP - LEVELS OF DETECTION (LODs) AND LEVELS OF QUANTITATION I OON AVEPAGED OVEP ALL COMMODITIES* APPENDIX 7.

(LUUS)		AVERAGED UVER ALL	D OVE		CUMIN	CHITTCO	2							
PESTICIDES	APHIS	10	CA		FL		IW		ΝΥ		TX		WA	
	TOD	Год	LOQ	Гоб	COL	Loq	LOD	LoQ	LOD	Γοσ	LOD	Γοσ	LOD	LOQ
2,4-D	NA	NA	NA	NA	NA	NA	NA	NA	6	20	NA	NA	NA	NA
ACEPHATE	NA	NA	3	10	5	17	5	18	4	12	5	16	49	164
ATRAZINE	NA	NA	15	50	3	10	28	92	16	60	49	160	14	48
BENOMYL	50	100	This is		a single analyte _I	procedure	performed only	ed only at	NMRAI	NMRAL/APHIS				
BROMOXYNIL	NA	NA	NA	NA	NA	NA	NA	NA	2	5	NA	NA	NA	NA
CHLORPYRIFOS	NA	NA	8	25	3	10	11	37	3	10	6	20	8	26
DICLORAN	NA	NA	8	25	3	10	8	27	•2	20	5	16	3	10
pp'-DICOFOL	NA	NA	15	50	14	33	15	50	5	10	18	60	13	48
HCB	NA	NA	3	10	3	10	đ	12	1	6	4	10	3	10
IPRODIONE	NA	NA	15	60	40	130	60	200	10	50	6	28	24	80
LINDANE	NA	NA	3	10	5	17	4	14	2	10	Ŷ	20	5	17
METHAMIDOPHOS	NA	NA	3	10	5	17	3	11	3	8	4	12	15	51
METHOXYCHLOR	NA	NA	15	50	8	25	20	87	5	20	6	30	22	72
PCB	NA	NA	3	10	3	16	ਸਭਾ	14	1	5	2	7	3	10
PERMETHRIN CIS	NA	NA	8	25	QN	ND	31	100	4	16	26	87	11	36
PERMETHRIN TRANS	NA	NA	∞	25	QN	ND	31	100	4	10	26	87	12	39
PERMETHRIN TOTAL	NA	NA	QN	QN	15	75	QN	QN	QN	QN	ND	DN	UN	ND
QUINTOZENE (PCNB)	NA	NA	3	10	3	10	6	19	3	10	4	13	3	10

LODs and LOQs were determined during the 1992 Method Validation Study. All LOD's and LOQs are in parts per billion. Not applicable, analysis not performed at that laboratory. Not determined, laboratory reporting permethrin as total or as the isomers.

NA: ND:

*

·

APPENDIX 8.

OTHER PESTICIDES IN PDP - LEVELS OF DETECTION (LODs) and LEVELS OF QUANTITATION (LOQs) AVERAGED OVER ALL COMMODITIES*

IDD IDD <th>PESTICIDES</th> <th>APHIS</th> <th></th> <th>CA</th> <th></th> <th>FL</th> <th></th> <th>IM</th> <th></th> <th>ΝΥ</th> <th></th> <th>TX</th> <th></th> <th>WA</th> <th></th>	PESTICIDES	APHIS		CA		FL		IM		ΝΥ		TX		WA	
\cdot NANA $$ </td <td></td> <td>гор</td> <td>ToQ</td> <td>гор</td> <td>рол</td> <td>LOD</td> <td>Год</td> <td>LOD</td> <td>Год</td> <td>LOD</td> <td>LoQ</td> <td>LOD</td> <td>LoQ</td> <td>LOD</td> <td>Год</td>		гор	ToQ	гор	рол	LOD	Год	LOD	Год	LOD	LoQ	LOD	LoQ	LOD	Год
SMETHYL NA IS IS S0 30 100 29 95 95 YL NA NA NA 30 100 6 20 18 61 1 YL NA NA NA 15 50 20 66 14 46 1 THALONIL NA NA NA 15 50 14 46 1 46 1 46 1 47 1 47 1 47 1 1 1 1 46 1 46 1	\LDRIN^	NA	NA	1	-			1		1		6	30		1
NA NA 30 100 6 20 18 61 YL NA NA 15 50 20 66	VZINPHOS METHYL	NA	NA	15	50	30	100	29	95	25	80	24	80	46	150
YL NA IS 50 20 66 THALONIL NA NA I5 50 14 46 THALONIL NA NA NA 15 50 14 46 ROPHAM NA NA NA 8 25 20 66 14 47 YRIFOS NA NA NA 8 25 20 66 19 ACTHAL) NA NA NA 8 25 4 13 5 18 -	APTAN	NA	NA	30	100	9	20	18	61	∞	20	12	40	3	6
THALONILNANA1550144646ROPHAMNANANA825206614477XNANANA825206614477ANANANA8254413518ANANANA825ACTHAL)NANA825ACTHAL)NANANA825ACTHAL)NANANA825	ARBARYL	NA	NA	15	50	20	66			10	40	1	1	1	
ROPHAM NA NA NA 8 25 20 66 14 47 XRIFOS NA NA NA 3 10 3 10 - A NA NA NA NA S 25 4 13 5 18 ACTHAL) NA NA NA NA 8 25 4 13 5 18 </td <td>HLOROTHALONIL</td> <td>NA</td> <td>NA</td> <td>15</td> <td>50</td> <td>-</td> <td>1</td> <td>14</td> <td>46</td> <td>∞</td> <td>25</td> <td>7</td> <td>24</td> <td>1</td> <td>3</td>	HLOROTHALONIL	NA	NA	15	50	-	1	14	46	∞	25	7	24	1	3
WRIFOS NA NA 3 10 3 10 -	CHLORPROPHAM	NA	NA	8	25	20	66	14	47	10	40	1	1	35	120
ACTHAL) NA NA NA 8 25 4 13 5 18 - NA NA NA NA 8 25 </td <td>THLORPYRIFOS AETHYL^A</td> <td>NA</td> <td>NA</td> <td>3</td> <td>10</td> <td>3</td> <td>10</td> <td> </td> <td> </td> <td>1</td> <td>1</td> <td>3</td> <td>8</td> <td>22</td> <td>68</td>	THLORPYRIFOS AETHYL ^A	NA	NA	3	10	3	10			1	1	3	8	22	68
NA NA 8 25	DCPA (DACTHAL)	NA	NA	8	25	4	13	5	18	1		7	24	1	3
NA NA 8 25 3 10 6 19 ICHLORVOS) NA NA 8 25 3 10 6 19 ICHLORVOS) NA NA NA N NA NA NA	p'-DDD	NA	NA	8	25									1	
ICHLORVOS) NA NA 8 25 3 10 ICHLORVOS) NA NA NA <td>p'-DDE</td> <td>NA</td> <td>NA</td> <td>8</td> <td>25</td> <td>3</td> <td>10</td> <td>9</td> <td>19</td> <td>2</td> <td>8</td> <td>7</td> <td>24</td> <td>1</td> <td>4</td>	p'-DDE	NA	NA	8	25	3	10	9	19	2	8	7	24	1	4
HLORVOS) NA NA <t< td=""><td>ւթ՝-DDT</td><td>NA</td><td>NA</td><td>8</td><td>25</td><td>3</td><td>10</td><td> </td><td> </td><td>6</td><td>20</td><td>1</td><td>1</td><td> </td><td>1</td></t<>	ւթ՝-DDT	NA	NA	8	25	3	10			6	20	1	1		1
ATE NA NA 3 10 4 13 6 18 ATE NA NA NA 3 10 11 36 6 19 AMINE NA NA NA 10 11 36 6 19 AMINE NA NA 10 33 9 29 29 ON NA NA 10 33 9 29 FAN I NA NA 10 33 9 29	DVP (DICHLORVOS)	NA	NA			1		1	1	1	1	ю	10	-	1
NA NA 3 10 11 36 6 19 NA NA 10 33 9 29 29 NA NA 10 33 9 29 29 NA NA 10 33 9 29 29 NA NA 10 33 9 29 NA NA <	NAZINON	NA	NA	3	10	4	13	9	18	4	12	4	12	16	55
NA NA 10 33 9 29 NA NA NA 10 33 9 29 NA NA <td>DIMETHOATE</td> <td>NA</td> <td>NA</td> <td>3</td> <td>10</td> <td>11</td> <td>36</td> <td>9</td> <td>19</td> <td>ю</td> <td>8</td> <td>9</td> <td>20</td> <td>14</td> <td>46</td>	DIMETHOATE	NA	NA	3	10	11	36	9	19	ю	8	9	20	14	46
NA NA	JIPHENYLAMINE	NA	NA		-	10	33	6	29	10	25			140	480
NA NA 3 10 3 10 6 20	NSULFOTON	NA	NA									7	24	60	200
	ENDOSULFAN I	NA	NA	3	10	Э	10	9	20	2	9	7	24	1	4
ENDOSULFAN II NA NA 3 10 3 10 6 19 3	ENDOSULFAN II	NA	NA	3	10	3	10	6	19	3	10	7	24	2	5

Page 1 of 2

OTHER PESTICIDES IN PDP - LEVELS OF DETECTION (LODs) and LEVELS OF QUANTITATION (LOQs) AVERAGED OVER ALL COMMODITIES* APPENDIX 8.

indext index index index <th>PESTICIDES</th> <th>APHIS</th> <th></th> <th>CA</th> <th></th> <th>FL</th> <th></th> <th>IM</th> <th></th> <th>NY</th> <th></th> <th>TX</th> <th></th> <th>WA</th> <th></th>	PESTICIDES	APHIS		CA		FL		IM		NY		TX		WA	
NA NA 3 10 3 10 3 10 3 10 3 10 2 10 2		LOD	Loq	LOD	Loq	LOD	Год	LOD	LoQ	LOD	Год	LOD	Γοδ	LOD	год
NA NA 3 10 6 20 4 10 5 4 12 16 NA NA 30 100 11 38 8 30 610 500 66 NA NA 4 12 66 NA NA 5 15 3 8 6 10 32 28 HON NA NA 5 15 33 8 6 10 32 28 HON NA NA 5 15 33 8 6 200 66 3 NA NA 5 12 12 5 5 NA NA NA 5	ENDOSULFAN SULFATE	NA	NA	3	10	ŝ	10	6	31	•	20	7	24	20	60
NA NA :0 100 : : 11 38 8 30 610 2000 66 NA NA : <t< td=""><td>ETHION</td><td>NA</td><td>NA</td><td>3</td><td>10</td><td>9</td><td>20</td><td>4</td><td>10</td><td>2</td><td>4</td><td>4</td><td>12</td><td>16</td><td>54</td></t<>	ETHION	NA	NA	3	10	9	20	4	10	2	4	4	12	16	54
NA NA 12 66 12 66 66 66 66 HON NA NA NA 10 5 15 3 6 10 32 28 66 32 28 5 38 66 20 32 28 5 38 5 38 5 38 38 5 38 5 38 38 5 38 38 5 38 5 38 5 38 38 5 38 38 5 38 38 36 39 <td>IMAZALIL</td> <td>NA</td> <td>NA</td> <td>30</td> <td>100</td> <td>1</td> <td></td> <td>11</td> <td>38</td> <td>8</td> <td>30</td> <td>610</td> <td>2000</td> <td>66</td> <td>220</td>	IMAZALIL	NA	NA	30	100	1		11	38	8	30	610	2000	66	220
NA NA * 10 6 20 3 6 10 32 28 HON NA * 10 10 5 15 3 6 10 32 28 28 HON NA NA * 10 5 15 3 8 6 20 32 28 NA NA 5 15 7 12 29 28 2 29 20 30 30 ··· NA NA 9 28 5 16 17 29 20 34 20 34 20 34 ··· NA NA 9 28 50 61 17 20 20 21 20 21 21 21 20	MALATHION	NA	NA		ł	-	1	-	-	-	-	4	12	66	200
HION NA NA IO I	METHIDATHION	NA	NA	•	10	-		9	20	3	9	10	32	28	93
NA NA 2. NA NA NA 30 100 10 33 41 104 12 50 61 200 34 HYL) NA NA 9 28 5 16 21 HYL) NA NA 9 28 5 16 21 21 HYL) NA NA 9 28 5 16 21 21 HYL) NA NA 5 16 17 21 NA NA NA 5 5 16 17	METHYL PARATHION	NA	NA	•	10	-		5	15	3	8	9	20	cø	29
· NA NA 30 100 10 33 41 104 12 50 61 200 34 HYL) NA ···	MEVINPHOS (PHOSDRIN)	NA	NA	1	;	1	-	1	1	1		7	12	2	260
NA NA 21 21 NA NA 3 10 4 10 5 18 2 6 17 NA NA 5 18 2 6 17 NA NA 5 17 17 NA NA 17 NA NA 8 25 6 76 16 52 10 30 20 17 17 50 100 30 100 40 130 2 30 20 10 11 11 NA NA 8 25 4 10 30 2 30 2 10 11 10 10 <t< td=""><td>MYCLOBUTANIL</td><td>NA</td><td>NA</td><td>30</td><td>100</td><td>10</td><td>33</td><td>41</td><td>104</td><td>12</td><td>50</td><td>61</td><td>200</td><td>34</td><td>110</td></t<>	MYCLOBUTANIL	NA	NA	30	100	10	33	41	104	12	50	61	200	34	110
NA NA 3 10 4 10 5 18 2 6 17 NA NA 17 NA NA 8 25 6 76 16 52 10 30 20 80 41 50 100 30 100 40 130 2 30 20 840 76 NA NA NA 8 25 4 13 12 41 4 16 48 76	OMETHOATE	NA	NA			-	-	6	28	5	16			21	69
NA NA	PARATHION (ETHYL)	NA	NA	3	10	+	10	5	18	2	9	-	1	17	58
NA NA 8 25 6 76 16 52 10 30 20 80 41 50 100 30 100 40 130 2 30 100 30 76 76 76 NA NA NA 8 25 4 13 12 41 4 16 48 76	PHOSALONE	NA	NA	-		-	1	-		L@	20		1		1
50 100 30 100 40 130 2 30 10 30 250 840 76 NA NA NA 8 25 4 13 12 41 4 16 14 48 2	PHOSMET	NA	NA	8	25	9	76	16	52	10	30	20	80	41	140
NA NA 8 25 4 13 12 41 4 16 14 48 2	THIABENDAZOLE	50	100	30	100	40	130	cø	30	10	30	250	840	76	250
	NINCLOZOLIN	NA	NA	8	25	4	13	12	41	4	16	14	48	5	5

Non-Core LOD/LOQs are estimates based on historical data. All LODs and LOQs are in parts per billion. Aldrin and Chlorpyrifos Methyl are process standards. Not applicable, analysis not performed at that laboratory. Not available.

* ¥ +

Page 2 of 2

DISTRIBUTION OF RESIDUES DETECTED BY COMMODITY

COMMODITY/PESTICIDE	NUMBER OF SAMPLES ANALYZED	NUMBER OF SAMPLES WITH RESIDUES DETECTED	PERCENT OF SAMPLES WITH RESIDUES DETECTED
APPLES			
Azinphos-Methyl	309	70	22.7%
Benomyl	95	10	10.5%
Captan	309	30	9.7%
Carbaryl	162	2	1.2%
Chlorothalonil(V=1)	309	1	0.3%
Chlorpropham(V=1)	309	1	0.3%
Chlorpyrifos	309	44	14.2%
Diazinon	309	8	2.6%
Dicofol	309	8	2.6%
Dimethoate	309	14	4.5%
Diphenylamine	309	108	35.0%
Endosulfans	309	37	12.0%
Ethion	309	14	4.5%
Omethoate	309	6	1.9%
Parathion	309	6	1.9%
Parathion-Methyl	309	21	6.8%
Phosalone	309	2	0.6%
Phosmet	309	5	1.6%
Thiabendazole*	253	129	51.0%
Vinclozolin(V=1)	309	1	0.3%
	Total Residues Detected:	517	
Total number of samples analyze Total number of samples with pos Percent of samples with residues Number of different pesticides de	sitive findings: 239 detected: 77.3%		
BANANAS			
Ethoprop	311	1	0.3%
Imazalil	311	5	1.6%
Thiabendazole(X=1)*	254	66	26.0%
	Total Residues Detected:	72	
Total number of samples analyze Total number of samples with pos Percent of samples with residues Number of different pesticides de	sitive findings: 69 detected: 22.2%		
			Page 1 of 6

Page 1 of 6

DISTRIBUTION OF RESIDUES DETECTED BY COMMODITY

COMMODITY/PESTICIDE	NUMBER OF SAMPLES	NUMBER OF SAMPLES WITH	PERCENT OF SAMPLES WITH
	ANALYZED		RESIDUES DETECTED
CELERY			
Acephate	259	58	22.4%
Anilazine	259	8	3.1%
Chlorothalonil	259	92	35.5%
Dacthal(V=3)	259	3	1.2%
DDE	259	10	3.9%
DDT	259	1	0.4%
Diazinon	259	9	3.5%
Dicloran	259	81	31.3%
Endosulfans	259	2	0.8%
Iprodione(V=2)	259	2	0.8%
Methamidophos	259	37	14.3%
Permethrins	259	95	36.7%
	Total Residues Detected		
Total number of samples analyze			1
Total number of samples with po			
Percent of samples with residues			
Number of different pesticides de			
GREEN BEANS	[
Acephate(X=1)	238	67	28.2%
Azinphos–Methyl	238	16	6.7%
Benomyl	93	8	8.6%
Chlorothalonil	238	26	10.9%
Chlorpyrifos	238	2	0.8%
Dacthal	238	7	2.9%
DDE	238	1	0.4%
Diazinon	238	2	0.8%
Dicloran	238	4	1.7%
Dimethoate	238	11	4.6%
Endosulfans	238	84	35.3%
Ethion	238		0.4%
	238	78	32.8%
Methamidophos(V=2)**		10	0.4%
Methoxychlor	238		
Omethoate	238	4	1.7%
Parathion North 1	238		0.4%
Parathion-Methyl	238		0.4%
Permethrins($V=1$)	238	1	0.4%
Quintozene	238	6	2.5%
Total number of complete each	Total Residues Detected:	321	
Total number of samples analyze Total number of samples with po Percent of samples with residues	sitive findings: 157		
Number of different pesticides de			

DISTRIBUTION OF RESIDUES DETECTED BY COMMODITY

COMMODITY/PESTICIDE	NUMBER OF SAMPLES	NUMBER OF SAMPLES WITH	PERCENT OF SAMPLES WITH
	ANALYZED	RESIDUES DETECTED	RESIDUES DETECTED
GRAPEFRUIT	010		
Diazinon	310	4	1.3%
Dicofol	310	1	0.3%
Ethion	310	10	3.2%
Imazalil	310	35	11.3%
Thiabendazole*	226	87	38.5%
	Total Residues Detected	137	
Total number of samples analyzed Total number of samples with posi Percent of samples with residues of Number of different pesticides dete	tive findings: 109 letected: 35.2%		
GRAPES		[
Azinphos-Methyl	297	4	1.3%
Captan	297	143	48.1%
Chlorpyrifos(X=1)	297	22	7.4%
Diazinon	297	3	1.0%
Dicloran	297	5	1.7%
Dicofol	297	3	1.0%
Dimethoate(X=1)	297	40	13.5%
Endosulfans	297	6	2.0%
Iprodione	297	118	39.7%
Methamidophos	297	1	0.3%
Mevinphos	297	4	0.3%
Myclobutanil	297	11	3.7%
Omethoate	297	16	5.4%
Parathion(X=1)	297	4	1.3%
Parathion-Methyl	297		0.3%
Vinclozolin	297	132	44.4%
	Total Residues Detected:		44.470
Total number of samples analyzed		510	
Total number of samples with posi-			
Percent of samples with residues c	0		
Number of different pesticides dete			

Page 3 of 6

DISTRIBUTION OF RESIDUES DETECTED BY COMMODITY

-			
	NUMBER OF	NUMBER OF	PERCENT OF
COMMODITY/PESTICIDE	SAMPLES	SAMPLES WITH	SAMPLES WITH
	ANALYZED	RESIDUES DETECTED	RESIDUES DETECTED
LETTUCE	010		7.14
Acephate	310	22	7.1%
Chlorothalonil(V=1)	310	1	0.3%
Chlorpyrifos(V=1)	310	1	0.3%
Cypermethrin	310	1	0.3%
Dacthal	310	7	2.3%
DDE	310	8	2.6%
DDT	310	1	0.3%
Dimethoate	310	17	5.5%
Disulfoton Sulfone	310	3	1.0%
Endosulfans	310	46	14.8%
Iprodione	310	1	0.3%
Methamidophos	310	8	2.6%
Mevinphos	310	2	0.6%
Omethoate	310	2	0.6%
Parathion-Methyl	310	1	0.3%
Permethrins	310	30	9.7%
	Total Residues Detected:	: 151	
Total number of samples analyze			
Total number of samples with pos	sitive findings: 105		
Percent of samples with residues	detected: 33.9%		
Number of different pesticides de	tected: 16		
ORANGES			
2,4–D (NY only)	27	2	7.4%
Chlorpyrifos	311	8	2.6%
Dicofol	311	2	0.6%
Dimethoate	311	4	1.3%
Ethion	311	10	3.2%
Imazalil	311	85	27.3%
Methidathion	311	6	1.9%
Thiabendazole*	227	98	43.2%
	Total Residues Detected:	215	
Total number of samples analyze	d: 311		
Total number of samples with pos			
Percent of samples with residues	0		
Number of different pesticides de			
·····			

Page 4 of 6

DISTRIBUTION OF RESIDUES DETECTED BY COMMODITY

COMMODITY/PESTICIDE	NUMBER OF SAMPLES ANALYZED	NUMBER OF SAMPLES WITH RESIDUES DETECTED	PERCENT OF SAMPLES WITH RESIDUES DETECTED
PEACHES	1		
Azinphos-Methyl	205	28	13.7%
Captan	205	27	13.2%
Carbaryl	25	1	4.0%
Chlorpyrifos	205	25	12.2%
DDT	205	1	0.5%
Diazinon	205	11	5.4%
Dichlorvos	205	1	0.5%
Dicloran	205	86	42.0%
Dimethoate(V=1)	205	1	0.5%
Endosulfans	205	15	7.3%
Iprodione	205	92	44.9%
Mevinphos	205	3	1.5%
Parathion	205	7	3.4%
Parathion-Methyl	205	17	8.3%
Permethrins	205	3	1.5%
Phosmet	205	20	9.8%
Propargite (FL only)	23	2	8.7%
Vinclozolin	205	4	2.0%
	Total Residues Detected:	344	
Total number of samples analyze			
Total number of samples with pos			
Percent of samples with residues			
Number of different pesticides de	tected: 18		

Page 5 of 6

DISTRIBUTION OF RESIDUES DETECTED BY COMMODITY

COMMODITY/PESTICIDE	NUMBER OF SAMPLES	NUMBER OF SAMPLES WITH	PERCENT OF SAMPLES WITH
	ANALYZED	RESIDUES DETECTED	RESIDUES DETECTED
POTATOES			
Chlorpropham	309	210	68.0%
DDE	309	36	11.7%
DDT	309	7	2.3%
Dicloran	309	1	0.3%
Dimethoate	309	1	0.3%
Endosulfans	309	23	7.4%
Methidathion	309	1	0.3%
Phorate Sulfone	309	1	0.3%
Quintozene	309	1	0.3%
Thiabendazole*	225	23	10.2%
	Total Residues Detected:	304	
Total number of samples analyze			
Total number of samples with pos			
Percent of samples with residues	detected: 74.8%		
Number of different pesticides de	tected: 10		
		TOTAL SAMPLES	
PESTICIDES DETECTED	NUMBER	NUMBER WITH	PERCENT WITH
TOTAL	ANALYZED	RESIDUE	RESIDUE
		DETECTED	DETECTED
42	2859	1664	58.2%
TOTAL NUMBER OF RESIDUES			
DETECTED			
2969			
* Compound was not analyzed by	California		Page 6 of 6

** All other residues were found in combination with Acephate.
(V) Residue was found where no Tolerance was established by EPA
(X) Residue exceeds EPA Tolerance

X			2			147			18						102	
TED MAX		14B			1.7M 3.3M .77M			.42M .23M			M98.	M77.	10B	10B 66B		
IMMARY OF RESULTS SAMPLES WITH RESIDUES DETECTED UMBER % BOL &/or MIN VALUE		7.4 BOL-14B	tected =		22.4 BQL-8B 28.2 BQL-7B 7.1 BQL-5B	tected =		10.5 BQL11M 8.6 50B	tected =		14.2 BQL-2B 0 8 ROL-3B	BQL		2.6 BQL-2B 12.2 BOI -4B		Page 1 0f 12
AARY OF F MPLES WIJ IBER	92)	2	l residues de		58 67 22	l residues de		10	residues de		44	22	-	25	residues de	
NUMBER SUMMAR NUMBER SAMPLE OF NUMBER SAMPLES	ough January 19	27	Total # of samples with residues detected		259 238 310	Total # of samples with residues detected		95 93	Total # of samples with residues detected		309 238	297	310	311 205	Total # of samples with residues detected	
STATES WHERE SAMPLES WERE COLLECTED	ORIGINAL EPA LIST	2,4-D (1)	To	ACEPHATE	CA, FL, MI, NY, TX, WA CA, FL, MI, NY, TX, WA CA, FL, MI, NY, TX		BENOMYL (2)	FL, MI, NY MI, TX, WA		CHLORPYRIFOS	CA, FL, MI, NY, TX, WA	CA, FL, MI, NY, TX, WA	NY	CA, MI, NY, TX CA. FL. MI. NY. TX. WA		
COMMODITIES	A.	ORANGES			CELERY GREEN BEANS LETTUCE			APPLES GREEN BEANS			APPLES GREEN BFANS	GRAPES	LETTUCE	ORANGES		
SHINOM		Apr-May			Feb-Jun Feb-Jun Jan-Jun			May-Jun May-Jun			Jan-Jun Mar-Apr	Feb-Jun	Åpr	Jan-Jun Feb-Jun		

					177		4	213	
	TED MAX			4.1M .55M 1.1M 2.9M 7B		.18M 30B 24B 36B		.29M 3M 1.2M 16M	
STICIDE	IMMARY OF RESULTS SAMPLES WITH RESIDUES DETECTED UMBER % BOL &/or MIN VALUE			31.3 BQL-11B 1.7 3B 1.7 3B 42.0 BQL-9B 0.3 7B	tected =		tected =	9.7 9.7 1.9	Page 2 of 12
SY PE	SUMMARY OF RESULTS SAMPLES WITH RESIL NUMBER	92)		8 8 5 7 4 1 2 8 1	residues de	8 + 0 0	residues de	2 118 1 92 residues de	
FECTED B	NUMBER SUMMAR NUMBER SAMPLE OF NUMBER SAMPLES	ough January 19		259 238 297 205 309	Total # of samples with residues detected =	309 310 297 311	I otal # of samples with residues detected	259 2 0 297 118 38 310 1 1 205 92 44 Total # of samples with residues detected	
DISTRIBUTION OF RESIDUES DETECTED BY PESTICIDE	STATES WHERE SAMPLES WERE COLLECTED	ORIGINAL EPA LIST (Modified through January 1992)	DICLORAN	CA, FL, MI, NY, TX, WA CA, TX, WA CA, NY, TX CA, FL, MI, NY, TX, WA CA	DICOFOL	FL, MI, NY, TX NY CA, TX NY, TX	IPRODIONE	NY, TX CA, FL, MI, NY, TX, WA CA CA, FL, MI, NY, TX, WA To	
STRIBUTION	COMMODITIES	A.		CELERY GREEN BEANS GRAPES PEACHES POTATOES		APPLES GRAPEFRUIT GRAPES ORANGES		CELERY GRAPES LETTUCE PEACHES	
	SHLNOW			Feb-Jun Mar-Jun Jan-May Feb-Jun Feb		Feb-May May Mar Mar-May		May Jan-Jun Apr Feb-Jun	

rage z or iz

10	
XIC	
EN	
АРР	

ETED MAX			.12M 1.8M 8B	124		5B			3.9M	1.9M	.21M	129		4B	168	•
UMMARY OF RESULTS SAMPLES WITH RESIDUES DETECTED NUMBER % BQL &/or MIN VALUE			14.3 BQL-2B 32.8 BQL-4B 0.3 8B	-		0.4 5B	ected =		36.7 BQL-9B		1.5 15B	ected =		-	0.3 6B ected =	Pade 3 of 12
SUMMARY OF RESULTS SAMPLES WITH RESIL NUMBER	9 92)		37 78 1	th residues det		+	th residues det		95	30	3	of samples with residues detected		9	th residues det	
SUM NUMBER SUM OF SAMPLES	ified through January 1992)		259 238 297	Total $\#$ of samples with residues detected =		238	Total # of samples with residues detected		259	310	205	Total # of samples wit		238	Total # of samples with residues detected	
STATES WHERE SAMPLES WERE COLLECTED	ORIGINAL EPA LIST (Modified th	METHAMIDOPHOS	CA, FL, MI, NY, TX, WA CA, FL, MI, NY, TX, WA NY CA MI NY TY	1 CC, WII, N 1, 1 C	МЕТНОХУСНLOR			PERMETHRINS	CA, FL, MI, NY, TX, WA	CA, FL, MI, NY, TX, WA	CA, NY		QUINTOZENE	TX, WA	LCA	
COMMODITIES	A.		CELERY GREEN BEANS GRAPES			GREEN BEANS			CELERY GREEN REANS	LETTUCE	PEACHES			GREEN BEANS	ruiai ues	
SHTNOM			Feb-Jun Feb-Jun Apr Ian-Iun	TIPA TIPA		Apr			Feb-Jun Mar	Jan-Jun	May-Jun			Mar-Jun Eat	rcu	

MAX			.62M	.38M	31M 74M	118		F	4.8M	1.6M .23M	120		<u></u> ш ш	В			В	37	
				č.	31M 74M			BQL	4.	<u>. </u>			16B 68B	66	7B	6B	83B		
MMARY OF RESULTS SAMPLES WITH RESIDUES DETECTED UMBER % BQL &/or MIN VALUE	1992)		BQL-		1.3 16B 13.7 BOI - 4B			0.3 BQL	BQL-	0.3 .23M	ctected =		2.6 6B 3.5 BQL-4B	0.8 7B	1.3 3B	1.0 2B	5.4 4B	stected =	Page 4 of 12
SUMMARY OF RESULTS SAMPLES WITH RESII NUMBER	ovember		20	16	4	residues de		-	92	97 1	residues de		8 0	2	4	e	11	residues de	
NUMBER SUMMAR NUMBER SAMPLE OF NUMBER SAMPLES	E UPDATED EPA LIST (November 1992)		309	238	297 205	# of s:		309	259	310	Total # of samples with residues detected		309 259	238	310	297	205	Total # of samples with residues detected	
		AZINPHOS-METHYL				Total	CHLOROTHALONIL				Tot	DIAZINON						Tot	
STATES WHERE SAMPLES WERE COLLECTED	ADDITIONAL PESTICIDES FROM TH	AZIN	CA, FL, MI, NY, TX, WA	FL, MI, NY, IX	NY, IX CA. MI. NY. TX		CHI	FL	CA, FL, MI, NY, WA	CA, FL, NT, WA			CA, TX CA, MI, NY, TX	<u>LT</u>	TX	NY, TX	CA, NY, TX		
COMMODITIES	B. ADDITION		APPLES	GREEN BEANS	GKAPES			APPLES	CELERY CDEEN DE ANS	LETTUCE			APPLES CELERY	GREEN BEANS	GRAPEFRUIT	GRAPES	PEACHES		
SHTNOM			Jan-Jun	reo-May	Jan-Mar Feb-Jun			May	Feb-Jun Feb-Tun	Jan			Feb-May Feb-Jun	Apr-May	May	Jan-May	Feb-Mar		

MAX			59B 1		16M	0		45B .16M .94M	71B .22M .13M	18M 213		1.7M	22B 25B 25B	35	
IMMARY OF RESULTS SAMPLES WITH RESIDUES DETECTEI IUMBER % BQL &/or MIN VALUE	992)		.5 59B =		.0 42B	1 1		BQL-2B 2B BQL-5B	12B BQL-4B BQL-3B	4 BQL-6B .		9B BOI	- 28 - 38 - 1	Page 5 of 12	1 - 202
SUMMARY OF RESULTS SAMPLES WITH RESIL NUMBER	(November 1		205 1 C		310 310 310 3 1 Total # of samples with residues detected			37 2 84	6 46 15	309 23 73 7 of samples with residues detected		4+	- 1 1	Total # of samples with residues detected	
SI NUMBER OF SAMPLES	HE UPDATED EPA LIST (November 1992)		205Total # of samples	NE	Total # of samples	1 01a1 7 01 24111 0103		309 259 238	297 310 205	Total # of samples		309	310 311	Total # of samples	
STATES WHERE SAMPLES WERE COLLECTED	ADDITIONAL PESTICIDES FROM THE UPD/	DICHLORVOS	CA	DISULFOTON SULFONE	CA		ENDOSULFANS	CA, FL, NY, TX, WA NY, TX CA, FL, MI, NY, TX, WA	TX CA, FL, MI, NY, TX, WA CA, NY, TX, WA	CA, FL, MI, NY, TX	ETHION	CA, FL, MI, NY, TX, WA	CA, FL, MI, NY, TX FL, MI, NY, TX		
COMMODITIES	B. ADDITIOI		PEACHES		LETTUCE			APPLES CELERY GREEN BEANS	GRAPES LETTUCE PEACHES	POTATOES		APPLES GRFFN RFANS	GRAPEFRUIT ORANGES		
SHINOM			Feb		Mar			Jan-Jun Mar-May Feb-Jun	Jun Jan-Jun Feb-Jun	Jan – Jun		Jan-Jun Mav	Jan-May		

				7			9				······		41]
TED MAX			36B 4B			15B 78B 18M			81B	.16M	32B 21M	11M		
JMMARY OF RESULTS SAMPLES WITH RESIDUES DETECTED IUMBER 26 BOL &/or MIN VALUE			1.9 BQL-3B 0.3 4B	ected =		0.3 15B 0.6 78B 1.5 1M	-		6.8 4B	0.4 16M	0.3 32B 0.3 21M	8.3 BQL-4B	ected =	Page 6 of 12
SUMMARY OF RESULTS SAMPLES WITH RESIL NUMBER	ovember		1 6	residues det		- N 0	residues det		21	, ,	+	17	residues det	
NUMBER SUMA OF NUM SAMPLES	E UPDATED EPA LIST (November 1992)		311 309	Total # of samples with residues detected =		297 310 205	Total # of samples with residues detected =		309	238	310	205	Total # of samples with residues detected	
SA SA SA	UPDATED	ATHION		Total			Total	МЕТНҮL					Total	
WHERE WERE CTED		METHIDAT			MEVINPHOS			PARATHION-METHYI						
STATES WHERE SAMPLES WERE COLLECTED	ADDITIONAL PESTICIDES FROM TH		CA, MI, NY, TX TX			N N N N N N N N N N N N N N N N N N N		ΡA	NY, TX	Z	MA	CA, FL, MI, NY, TX		
COMMODITIES	B. ADDITION		ORANGES POTATOES			GRAPES LETTUCE PEACHES			APPLES	GKEEN BEANS	LETTUCE	PEACHES		
MONTHS			Apr-Jun Jun			Apr Mar-Mar Apr			Jan-Jun	Mar Feb	Jun	Apr-Jun		

	c	0		200	(n			211
TED TED	2.2M		.64M 3.4M 2.2M		88B BQL		28B 9.1M	
SUMMARY OF RESULTS SAMPLES WITH RESIDUES DETECTED NUMBER % BQL &/or MIN VALUE	3.1 28B		9.7 BQL-37B 48.1 BQL-4B 13.2 BQL-11B	lected =	1.2 80B 4.0 BQL tected =		0.3 28B 68.0 BQL-9B	ected = Page 7 of 12
SUMMARY OF RESULTS SAMPLES WITH RESII NUMBER %	8	110210102	30 143 27	ı residues de	2 1 1 residues de		1 210	n residues de
MBER OF MPLES	259 8 3 Total # of complex with residues detected		309 297 205	Total # of samples with residues detected	162212514Total # of samples with residues detected		309 309	Total # of samples with residues detected
STICIDES					Total	MAH		Total
C. OTHER PESTICIDES	ANILAZINE CA, WA	CAPTAN	CA, FL, MI, NY, TX, WA CA, FL, MI, NY, TX, WA CA, FL, MI, NY, TX	CARBARYL	WA FL	CHLORPROPHAM	NY CA, FL, MI, NY, TX, WA	
COMMODITIES	CELERY		APPLES GRAPES PEACHES		APPLES PEACHES		APPLES POTATOES	
SHTNOM	Feb-May		Jan-Jun Jan-May Feb-Jun		Feb Jun		Mar Jan-Jun	

			-			17				55					10]
TED MA			.18M		41B 13M 20B			12B	17B			12B	27B	12B 19B		
RESULTS THRESIDUES DETECTED % BQL &/or MIN VALUE			0.3 .18M etected =		1.2 6B 2.9 9B 2.3 BQL-4B	etected =		3.9 BQL-3B	2.6 2B 11.7 ROI – 2B				0.3 27B	0.5 12B 2.3 3B	etected =	Page 8 of 12
OF W			1 residues d		3	residues d		10	36 36	residues d		-	1	- ~	residues d	
SUMMARY NUMBER SAMPLES OF NUMBER SAMPLES	JES		31010Total # of samples with residues detected		259 238 310	Total # of samples with residues detected		259 238	310	Total # of samples with residues detected		259	310	309 309	Total # of samples with residues detected	
	PESTICIDES	ETHRIN	Ĩ.	HAL		F	DE			Ţ	Ť				Ţ	
STATES WHERE SAMPLES WERE COLLECTED	OTHER	CYPERMETHRIN		DACTHAL			DD		MA .		DDT					
STATE: SAMPL SAMPL COLL	Ċ		XT		TX CA, TX, WA CA, MI, TX			FL, MI, NY, TX TX	CA, NY, TX CA. FL. MI. NY. TX. WA			NY	× ×	CA, NY		
COMMODITIES			LETTUCE		CELERY GREEN BEANS LETTUCE			CELERY GREEN BEANS	LETTUCE			CELERY	DE ACUES	POTATOES		
SHENOM			May		Mar–Jun May–Jun Jan–Jun			Feb-May Jun	Apr-Jun Jan-Jun			Jun	May Feb	Jan-Jun		

				88	108				125
TED			.2M .78M 1.5M .21M 14B BQL 12B		2.6M	2B		96B .33M .87M	
MMARY OF RESULTS SAMPLES WITH RESIDUES DETEC UMBER % BOL &/or MIN VALUE			4.5 BQL-36B 4.6 16B 13.5 4B 5.5 BQL-4B 1.3 BQL-4B 0.5 BQL 0.3 12B	etected =	35.0 BQL-37B stected =	0.3 2B etected =		1.6 BQL-16B 11.3 BQL-23B 27.3 BQL-10B	stected = Page 9 of 12
SUMMARY OF SAMPLES WI NUMBER			4 1 1 4 7 4 7 4 7 1 7 4 1 1	h residues de	108 h residues de	1 h residues d		5 35 85	h residues de
NUMBER SUMI OF NUN SAMPLES	S		309 238 297 310 311 205 309	Total # of samples with residues detected	Total # of samples with residues detected	311 1 0 Total # of samples with residues detected		311 310 311	Total # of samples with residues detected
ERE ERE ED	OTHER PESTICIDES	DIMETHOATE*		TC DIPHENYLAMINE	Tc	ETHOPROP	IMAZALIL		
STATES WHERE SAMPLES WERE COLLECTED	C. 0T		FL, MI, NY FL, MI, NY, TX FL, MI, NY, TX, WA MI, NY, TX MI TX TX	D	CA, FL, MI, NY	λN		MI, NY CA, FL, MI, NY, TX CA, FL, MI, NY, TX, WA	
COMMODITIES			APPLES GREEN BEANS GRAPES LETTUCE ORANGES PEACHES POTATOES	Salifornia	APPLES	BANANA		BANANA GRAPEFRUIT ORANGES	
SHTNOM			Jan-Jun Feb-Jun Jan-Jun Feb-Jun May-Jun May Jun	* Not analyzed by California	Jan-Jun	Jun		Mar-Jun Feb-Jun Jan-Jun	

MAX			.39M	11		.38M	.49M	.52M 88B	28		53B 11M	2.7M	.10M	18		38	-
TECTEL /or LUE			<u>с</u> .				4.				- 20	: ~i				38B	f 12
JMMARY OF RESULTS SAMPLES WITH RESIDUES DETECTED VUMBER % BQL &/or MIN VALUE			3.7 23B	etected =		1.9 BQL-47B	1.7 33B	5.4 47B 0.6 63B	11		1.9 5B 0.4 11M		3.4 6B	stected =		0.3 38B	ctected = Page 10 of 12
SUMMARY OF RESULTS SAMPLES WITH RESIL NUMBER %			11	residues de		9	4	16	residues de		- 9	• 4	7	residues de		+	residues de
NUMBER SUMA OF NUM SAMPLES	S		297	al # of samples with residues detected		309	238	297 310	Total # of samples with residues detected		309 238	297	205	Total # of samples with residues detected		309	al # of samples with residues detected
Z Ø	ESTICIDE	TANIL		Total	ATE				Tota	NOI				Tota	ULFONE		Total
STATES WHERE SAMPLES WERE COLLECTED	C. OTHER PESTICIDES	MYCLOBUTANIL			OMETHOATE					PARATHION					PHORATE SULFONE		
STATE SAMPI COLI	Ċ		CA, FL, NY			MI, NY	FL, MI, NY	MI, NY CA. MI			CA, NY TX	CA, FL, MI, NY	FL, NY			ΝΥ	
COMM©DITIES			GRAPES			APPLES	GREEN BEANS	GKAPES			APPLES GREEN BEANS	GRAPES	PEACHES			POTATOES	
SHTNOM			Jan-Jun			Jan-Jun	Apr-Jun	Jan-May Feb-Mar			Mar-May Feb	Feb-Apr	Mar-Jun			Jun	

APPENDIX 10

DISTRIBUTION OF RESIDUES DETECTED BY PESTICIDE

			C	V			25			2	
CTED MAX			.54M			.10M .23M			M86.		
SUMMAR Y OF RESULTS SAMPLES WITH RESIDUES DETECTED NUMBER % BQL &/or MIN VALUE			0.6 .43M			1.6 BQL-11B 9.8 BQL-23B	stected =		1.0 .74M	stected =	Page 11 of 12
SUMMARY OF RESULTS SAMPLES WITH RESIE NUMBER %			2	I csinnes ne		5 20	residues de		2	residues de	
NUMBER SUMN OF OF NUM SAMPLES	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		309 # of complex with	1 UIAI # UI SAIII PIES WILLI I ESIGUES UELECIEU =		309 205	Total # of samples with residues detected =		205	Total # of samples with residues detected =	
NI	C. OTHER PESTICIDES	Ш Z	Totol	I UIAI	F		Total	ITE		Total	
IERE /ERE ED	HER PE	PHOSALONE			PHOSMET			PROPARGITE			
STATES WHERE SAMPLES WERE COLLECTED	C. 01		FL, NY			MI, NY CA, FL, MI, NY, TX			1		
TES			Ē			ΣÒ			F		
COMMODITIES			APPLES			APPLES PEACHES			PEACHES		
SHTNOM			Mar-Apr			Jan-Apr Feb-Jun			Mar		

10	
×	
D	
E	
٩	
AP	

DISTRIBUTION OF RESIDUES DETECTED BY PESTICIDE

					403			137			
ED			3.8M .56M 1.6M	1.6M 1.1M			30B 2.3M .36M				
IMMARY OF RESULTS SAMPLES WITH RESIDUES DETECTED UMBER % BQL &/or MIN VALUE			41.7 BQL11M 21.2 BQL-26B 28.1 BQL-3B	31.5 BQL-11B 7.4 BQL-36B	etected =		0.3 30B 44.4 BQL-4B 2.0 18B	etected =		Page 12 of 12	
SUMMARY OF RESULTS SAMPLES WITH RESIL NUMBER			129 66 87	98 23	n residues d		1 132 4	1 residues d			
NUMBER SUMA NUMBER SAI OF NUN SAMPLES	ES		309 311 310	311 309	Total # of samples with residues detected		309 297 205	Total # of samples with residues detected			or bananas.
STATES WHERE SAMPLES WERE COLLECTED	C. OTHER PESTICIDES	THIABENDAZOLE*	FL, MI, NY, TX, WA FL, MI, NY, TX, WA FL, MI, NY	FL, MI, NY, WA MI, NY	To	VINCLOZOLIN	NY CA, FL, MI, NY, TX, WA FL, NY		42 2859	B Parts Per Billion – Units are expressed in PPB when concentrations are < 0.100 PPM. M Parts Per Million	BQL Below Quantifiable Level (1) Analysis was limited to apples, oranges, grapefruit, potatoes, and grapes (2) Analysis was limited to apples, green beans, and bananas. Benomyl was non-detected for bananas.
COMMODITIES			APPLES BANANA GRAPEFRUIT	ORANGES POTATOES	fornia		APPLES GRAPES PEACHES		FOUND = VALYZED =	nits are expressed in PPB	e Level I to apples, oranges, grape I to apples, green beans, a
SHLNOW			Jan-Jun Feb-Jun Jan-Jun	Jan-Jun Jan-Jun	* Not analyzed by California		Mar Jan-May Mar-Jun		TOTAL PESTICIDES FOUND = TOTAL SAMPLES ANALYZED =	B Parts Per Billion – Ur M Parts Per Million	BQL Below Quantifiable Level (1) Analysis was limited to app (2) Analysis was limited to app

APPENDIX 11

MULTIPLE PESTICIDE RESIDUES DETECTED

APPLES

AB		o	
# OF RESIDUES SA	SAMPLES		3 MOST FREQUENTLY DETECTED
DETECTED/SAMPLE #		%	PESTICIDES (*)
ω		0.3%	CAPTAN (1), AZINPHOS-METHYL (1), ENDOSULFANS (1)
7		0.3%	AZINPHOS-METHYL (1), DIPHENYLAMINE (1), THIABÈNDAZOLE (1)
9		0.3%	AZINPHOS-METHYL (1), PARATHION-METHYL (1), ENDOSULFANS (1)
5	9	1.9%	DIPHENYLAMINE (5), THIABENDAZOLE (5), AZINPHOS-METHYL (3)
4	21	6.8%	THLABENDAZOLE (18), AZINPHOS–METHÝL (13), DIPHENYLAMINE (13)
n	41	13.3%	THIABENDAZOLE (27), DIPHENYLAMINE (20), AZINPHOS–METHYL (16)
2	91	29.4%	THIABENDAZOLE (56), DIPHENYLAMINE (48), AZINPHOS–METHYL (23)
	77	24.9%	THIABENDAZOLE (20), DIPHENYLAMINE (19), AZINPHOS–METHYL (12)
0	70	22.7%	
TOTAL # OF SAMPLES:	309		
TOTAL # OF RESIDUES DETECTED:		517	

BANANAS

BCO	UES SAMPLES 3 MOST FREQUENTLY DETECTED MPLE # % PESTICIDES (*)	2 3 1.0% THIABENDAZOLE (3), IMAZALIL (2), ETHOPROP (1)	1 66 21.2% THIABENDAZOLE (63), IMAZALIL (3)	0 242 77.8%	APLES: 311	TOTAL # OF RESIDUES DETECTED: 72 72	
A	# OF RESIDUES DETECTED/SAMPI				TOTAL # OF SAMPLES:	TOTAL # OF RESID	

CELERY

					(6	5)			
			()		N (1	L (2			
	ED	(;	Ľ Ú	, 	RA	INO			
	ECT	こ 旧 王	ÍNC	(20)	ĊĹĊ.	IAL			
	DET	HA	HAL	ATE	, DI	ETO			
		CEP	OTH	EPH	(36)	, ÔR,			
C	IDF	H), A	OR	ACI	SNI	CHI			
	FREQUENTLY DE) S (4	CHÌ	20),	THIR	24),			
	REC	PHC	12),	AN (ME	NS (
	T F	<u> A</u>) E	OR	PER	HRI			
	3 MOST FREQUENTLY DETECTED PPSTICIDES (*)	AM	HA	DICL	39),	AET			
	n	ETH	CEI	(1), I	AIL (ERN			
), M	2), A	4S (2	ΓŌ	6), P			
		N (4	N (1	IRIN	THA	N (2	•		
		ICLORAN (4), METHAMIDOPHOS (4), ACEPHATE (4)	ICLORAN (12), ACEPHATE (12), CHLOROTHALONIL (10)	ERMETHRINS (21), DICLORAN (20), ACEPHATE (20)	RO	DRA			
		CL	[CLC	ERM	HLO	CLC			
				PE	U				
		1.5% D	5.4% D	13.1% PI	25.9% CHLOROTHALONIL (39), PERMETHRINS (36), DICLÓRAN (19)	33.2% DICLORAN (26), PERMETHRINS (24), CHLOROTHALONIL (22)	20.8%		398
C	2 %				2	က	2		
	ES								
	SAMPLES	4	4	34	67	86	54	259	
	× SA #								
									TED
									U E U
	£1]	S	4	 е	2	-	0		S DE
	ES APLE							LES	ЭОĘ
	IDU ISAN							AMF	ESI
A	# OF RESIDU ETECTED/SAI							DF S	DF F
	EC EC) # -) #]
	# OI DETE(TOTAL # OF SAMPLES:	OTAL # OF RESIDUES DETECTED
								\vdash	F

APPENDIX 11

MULTIPLE PESTICIDE RESIDUES DETECTED

GREEN BEANS

A A B # OF RESIDUES 5 5 DETECTED/SAMPLE 4 DETECTED/SAMPLE 4 5 5 6 1 1 1 1 2 1 1	SAMI SAMIP	C S 76 1.7% 3.8% 3.8% 23.1% 23.1% 23.1% 23.1% 23.5% 34.0% 321 321 321 13.9% 64.8% 64.8% 0.7% 0.7%	D 3 MOST FREQUENTLY DETECTED 3 MOST FREQUENTLY DETECTED FESTICIDES (4) AZINPHOS-METHYL (4), ENDOSULFANS (9), ACEPHATE (9) BNDOSULFANS (9), METHAMIDOPHOS (9), ACEPHATE (20) METHAMIDOPHOS (31), ACEPHATE (26), ENDOSULFANS (23) METHAMIDOPHOS (31), ACEPHATE (27), ENDOSULFANS (20) ENDOSULFANS (26), DACTHAL (6), METHAMIDOPHOS (6) 3 MOST FREQUENTLY DETECTED 7 HIABENDAZOLE (2), IMAZALIL (2), DICOFOL (1) THIABENDAZOLE (2), IMAZALIL (19), ETHION (5) THIABENDAZOLE (2), IMAZALIL (19), ETHION (5) 7 HIABENDAZOLE (2), IMAZALIL (10), ETHION (5) 7 HIABENDAZOLE (5), IMAZALIL (10), ETHION (5) 7 MOST FREQUENTLY DETECTED 7 MOST FR
Ω4α	53 6		CAPTAN (6), DIMETHOATE (6), VINCLOZOLIN (6) CAPTAN (18), DIMETHOATE (17), VINCLOZOLIN (17)
י <u>ה</u> מי	44 84	14.8%	CAPTAN (40), VINCLOZOLIN (38), IPRODIONE (34) CAPTAN (59), VINCLOZOLIN (51), IPRODIONE (34)

25.6% IPRODIONE (22), VINCLOZOLIN (51), IPRODIONE (43) 20.9% 510 76 62 297 -TOTAL # OF SAMPLES: TOTAL # OF RESIDUES DETECTED: - 0

Page 2 of 4

APPENDIX 11 MULTIPLE PESTICIDE RESIDUES DETECTED

LETTUCE

Page 3 of 4

11
\mathbf{X}
0
С Ш
٩
AP

MULTIPLE PESTICIDE RESIDUES DETECTED

POTATOES

A	ш	<u>.</u>	
# OF RESIDUES	SA	SAMPLES	3 MOST FREQUENTLY DETECTED
DETECTED/SAMPLE	#	%	PESTICIDES (*)
4		1 0.	0.3% DDT (1), CHLORPROPHAM (1), ENDOSULFANS (1)
က		13 4.	4.2% CHLORPROPHAM (13), ENDOSULFANS (10), DDE (7)
C		44 14.	14.2% CHLORPROPHAM (39), DDE (18), THIABÈNDAZOLE (16)
		173 56.	56.0% CHLORPROPHAM (157), DDE (10), ENDOSULFANS (3)
0		78 25.	25.2%
TOTAL # OF SAMPLES:		309	
TOTAL # OF RESIDUES DETECTED:	ETECTED:		304
* Number of samples with positive findings	oositive finding:	S	Page 4 of 4

APPENDIX 12. TOLERANCE VIOLATIONS REPORTED TO FDA

Chlorothalonil Thiabendazole Acephate Methamidophos
Methamidophos Vinclozolin
Chlorpropham
Dacthal (DCPA)
Dacthal (DCPA)
Permethrins
Methamidophos
Parathion
Chlorpyrifos
Chlorpyrifos
Dimethoate
Iprodione
Chlorothalonil
Iprodione
Dimethoate
Dacthal (DCPA)

not fall under the exemption and was not grown in California.

APPENDIX 13. CHEMICAL ACTION OF PESTICIDES DETECTED BY PDP

PESTICIDE	CHEMICAL ACTION
2,4-D	Pre- and Post-Harvest Herbicide
АСЕРНАТЕ	Insecticide, weak Cholinesterase Inhibitor (the metabolite is Methamidophos)
ANILAZINE	Fungicide, leaf action
AZINPHOS-METHYL	Insecticide, Cholinesterase Inhibitor
BENOMYL	Pre- and Post-Harvest Fungicide (analyzed as Carbendazim)
CAPTAN	Protectant, Pre- and Post-Harvest Fungicide
CARBARYL	Insecticide, weak Cholinesterase Inhibitor
CHLOROTHALONIL	Fungicide, leaf action
CHLOROPROPHAM	Herbicide/Growth Regulator Pre- and Post-Emergence
CHLORPYRIFOS	Insecticide, Cholinesterase Inhibitor
CYPERMETHRIN	Insecticide
DDE	Degradation Product of DDT
DDT	Insecticide (All uses canceled, degrades to DDE and DDD)
DACTHAL (DCPA)	Herbicide
DIAZINON	Insecticide, Cholinesterase Inhibitor
DICHLORVOS (DDVP)	Insecticide/Acaricide post-harvest fumigant and penetrant action
DICLORAN	Pre- and Post-Harvest Fungicide
DICOFOL	Acaricide (the metabolite is dichlorobenzophenone)
DIMETHOATE	Insecticide/Acaricide Cholinesterase Inhibitor
DIPHENYLAMINE	Pre- and Post-Harvest Fungicide
DISULFOTON SULFONE	Insecticide/Acaricide Cholinesterase Inhibitor (Oxidized to Sulfone in plants)
ENDOSULFANS	Insecticide/Acaricide, contact action
ETHION	Insecticide/Acaricide, contact action Cholinesterase Inhibitor

.

APPENDIX 13. CHEMICAL ACTION OF PESTICIDES DETECTED BY PDP

PESTICIDE	CHEMICAL ACTION	
ETHOPROP	Nematocide/Insecticide (soil insecticide)	
IMAZALIL	Post-Harvest Fungicide	
IPRODIONE	Fungicide	
METHAMIDOPHOS	Insecticide/Acaricide Cholinesterase Inhibitor	-
METHIDATHION	Fungicide, contact action	
METHOXYCHLOR	Insecticide/Acaricide food storage control spray	
MEVINPHOS	Insecticide/Acaricide Cholinesterase Inhibitor	
MYCLOBUTANIL	Fungicide	
OMETHOATE	Insecticide/Acaricide - Cholinesterase Inhibitor (Dimethoate Metabolite)	
PARATHION	Insecticide/Acaricide Cholinesterase Inhibitor	
PARATHION-METHYL	Insecticide/Acaricide Cholinesterase Inhibitor	
PERMETHRINS	Insecticide, repellent	
PHORATE SULFONE	Insecticide/Acaricide Cholinesterase Inhibitor	
PHOSALONE	Insecticide/Acaricide Cholinesterase Inhibitor	
PHOSMET	Insecticide/Acaricide Cholinesterase Inhibitor	
PROPARGITE	Acaricide, residual killing action	
QUINTOZENE (PCNB)	Soil Fungicide, seed dressing agent	
THIABENDAZOLE	Pre- and Post-Harvest Fungicide	
VINCLOZOLIN	Fungicide, contact action	

· ·

-

18 av